

for Climate Change Mitigation & Adaptation in South Pacific

NABOU BIOMASS POWER PLANT

2. NABOU BIOMASS POWER PLANT

- 1. **PROJECT TYPE:** BIOMASS POWER PLANT (Renewable Energy)
- 2. LOCATION: NABOU, WESTERN DIVISION, FIJI
- **3. CAPACITY:** 12MW (Covering 40,000 households)
- 4. FUEL: WOOD BIOMASS (Wood Chip)
- 5. CONSTRUCTION PERIOD: 28 Months (200 job creation)
- 6. OPERATING PERIOD: 25 Years (Operator 50 jobs, Forest 100 jobs)
- 7. OFFCIAL OPENING: July 27, 2017

2. Nabou Biomass Power Plant

Project Structure

2. NABOU BIOMASS POWER PLANT

Fuel Supply – Biomass Energy

• Stable fuel sourcing strategy and fuel handling "know-how" are the key factors to a successful biomass project.

Programme Background

- **Energy** is a cornerstone of national advancement.
- **Greening energy system** contributes to directing national development towards a sustainable pathway.
- South Pacific Islands Countries (SPICs) are actively exploring viable alternative energy sources as their energy needs are met predominantly by diesel generation. Given the region's **heavy reliance on imported fossil fuels**, We aims to help the SPICs increase the uptake of renewable energy (RE), and ensure **energy security** across the region.
- Hence, we propose a **"Biomass Energy Programme in the South Pacific"** with Korea Development Bank (KDB) and Green Climate Fund (GCF).

- 1. HOST COUNTRIES: Fiji & Papua New Guinea (PNG)
- 2. FOCUS CATEGORIES: Mitigation (Power Generation) / Adaptation (Plantation)
- **3. FINANCING SIZE:** U\$ 500 mil (approx., funded by GCF, KDB, Mirae Asset Daewoo)
- 4. **EXECUTIVE ENTITY:** Korean Consortium SPC
- 5. BRIEF SUMMARY:
 - The proposed programme plans to build and distribute **biomass power plants** across SPICs.
 - Starting with a 12 MW power plant in Fiji Sabeto district.
 - Following the completion of the plant in Sabeto, we intend to leverage the biomass deployment model for **scaling-up and replication** to other parts of targeted area.
 - This RE initiative is to help SPICs make a desirable transition to the **RE-based system**, and further realize their full potential.

Programme Components

COMPONENT 1: SIX BIOMASS POWER PLANTS (12MW each)

- 4 Biomass Power Plants in Fiji / 2 Biomass Power Plants in PNG
- Expected total cost for Comp. 1 is around U\$ 300 mil, each costs around \$U 50 mil

COMPONENT 2: WOOD PELLET PLANT

- Wood Pellet Plant in Fiji for 500,00 ton/yr Production
- Expected total cost for Comp. 2 is around U\$ 200 mil

COMPONENT 3: TECHNICAL ASSISTANCE

- Provide to create an enabling environment for a successful delivery of the other two components

Sabeto Biomass Power Plant - Overview

- 1. **PROJECT TYPE:** BIOMASS POWER PLANT (Renewable Energy)
- 2. LOCATION: SABETO, WESTERN DIVISION, FIJI
- **3. CAPACITY:** 12MW (Covering 40,000 households)
- 4. FUEL: WOOD BIOMASS (Wood Chip)
- 5. CONSTRUCTION PERIOD: 28 Months (200 job creation)
- 6. OPERATING PERIOD: 25 Years (Operator 50 jobs, Forest 100 jobs)
- 7. OFFCIAL OPENING: Mid 2020 (Expected)

Sabeto Biomass Power Plant - Location

Sabeto Biomass Power Plant – Structure (Tentative)

Biomass Fuel

 $\mathbf{\Lambda}$

• Securing biomass fuel source (wood) with sustainability is key to successful programme delivery

	Itom Socuring Mothod Sizo				
9		Securing Method	Size		
	Short Rotation Tree (Energy Wood)	Plantation (Rotational)	5,000 ha / 12MW plant		
	African Tulip (Invasive)	Eradication with MF	10 million ton (est.) in Viti Levu		
	Wood Residues	Sawmill/Logging	50,000 ton/yr in Western Division		

Biomass Fuel – Short Rotation Tree (Energy Wood)

🙄 Spe	cies	Securin	g Method	Siz	ze
Short Rot (Energy	ation Tree / Wood)	Plantation	(Rotational)	5,000 ha per	12MW plant
					18

- 5,000 ha is already secured and being planted for Nabou power plant.
- Additional 5,000 ha on abandoned farming area will be utilized for Sabeto plant
- Gliricidia Sepium and Acacia Mangium are primary species.

Biomass Fuel – African Tulip (Invasive)

- African Tulip is the most invasive species tree in South Pacific
- Utilizing it as biomass fuel can bring the invaded land back to farmers
- After eradication, the land also can be used for energy wood plantation

Biomass Fuel – Wood Residues

Species	Securing Method	Size	
Wood Residue	Sawmill / Logging	50,000 ton/yr (est.)	

- Sawmill Residue: Sawdust, Shaving, Off-cuts are being dumped or burned
- Harvesting Residue: only 70% of trees (Pine, Mahogany, Raintree) are being taken to sawmill, other branches and small logs are left with accelerated carbon decay

Biomass Fuel – Wood Residues

Species	Residue Generated (ton/yr)			
Natural Forest	25,737			
Pine	163,061			
Mahogany	15,858			
Wood Chips	18,900			
Saw Milling	7,240			
Wood Veneer Sheets	4,335			
Plywood	1,200			
Total	236,331			

* IRENA, Fiji: Renewable Readiness Assessment

Climate Change - Mitigation

COUNTRY	PROJECT	SIZE	EMISSION REDUCTION
	NABOU BIOMASS POWER PLANT (2017)	12 MW	37,424 tCO2eq/yr
	SABETO BIOMASS POWER PLANT (2020)	12 MW	37,424 tCO2eq/yr
	3 RD BIOMASS POWER PLANT (2022)	12 MW	37,424 tCO2eq/yr
FIJI	4 th BIOMASS POWER PLANT (2024)	12 MW	37,424 tCO2eq/yr
	5 TH BIOMASS POWER PLANT (2026)	12 MW	37,424 tCO2eq/yr
	WOOD PELLET PLANT (2022)	24 MW	74,848 tCO2eq/yr
	SUBTOTAL	84 MW	261,968 tCO2eq/yr
	1 ST BIOMASS POWER PLANT	12 MW	37,424 tCO2eq/yr
PNG	2 ND BIOMASS POWER PLANT	12 MW	37,424 tCO2eq/yr
	SUBTOTAL	24 MW	74,848 tCO2eq/yr
	TOTAL	108 MW	336,816 tCO2eq/yr

* by 2026, most of fossil fuel power generation in Fiji can be replaced with biomass power plants

* Emission Reduction = Baseline Emission – Project Emission

Climate Change - Adaptation

Category	Impact	Increasing Resilience
Agricultural (Farming)	 Climate Change affecting farming Product (Drier, Cooler, Extreme Events) Idle farming area is rapidly increasing (income loss, job loss) 	 Energy wood plantation on idle farming area for farmers income & job security
Forest Ecosystem (African Tulip)	- Ecosystem Disturbance	 Utilizing as biomass fuel promotes its eradication Forest ecosystem stabilization Replantation with Energy wood

Conclusion

• With Biomass Energy,

- ✓ SPICs National Renewable Energy Target Implementation
- ✓ Climate Change Mitigation With Low Emission Development
- ✓ Increase resilience on climate change with adaptation mechanism
- ✓ National GDP improvement and other social benefits (Job, Energy Security, Technology)

Indicator	Current	Tar	gets
mulcator	2016	2020	2030
Fiji Electricity Generation with Renewable Energy	Around 50%	81%	99%

