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Abstract

An increasing number of international initiatives aim to reconcile development with

conservation. Crucial to successful implementation of these initiatives is a compre-

hensive understanding of the current ecological condition of landscapes and their

spatial distributions. Here, we provide a cumulative measure of human modification

of terrestrial lands based on modeling the physical extents of 13 anthropogenic

stressors and their estimated impacts using spatially explicit global datasets with a

median year of 2016. We quantified the degree of land modification and the

amount and spatial configuration of low modified lands (i.e., natural areas relatively

free from human alteration) across all ecoregions and biomes. We identified that

fewer unmodified lands remain than previously reported and that most of the world

is in a state of intermediate modification, with 52% of ecoregions classified as mod-

erately modified. Given that these moderately modified ecoregions fall within critical

land use thresholds, we propose that they warrant elevated attention and require

proactive spatial planning to maintain biodiversity and ecosystem function before

important environmental values are lost.
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1 | INTRODUCTION

Humans have dramatically transformed the terrestrial biosphere

(Ellis, Klein Goldewijk, Siebert, Lightman, & Ramankutty, 2010),

impacting global biodiversity (Newbold et al., 2015), the functioning

and stability of Earth's ecosystems (Steffen et al., 2015), and the pro-

visioning of ecosystem services upon which we depend (Millennium

Ecosystem Assessment, 2005). The global community has responded

by developing a number of international initiatives to reconcile

human development with conservation. For example, the Convention

on Biological Diversity (CBD) 2020 Aichi Biodiversity Targets

establishes the protection of 17% of global terrestrial lands (Target

11), the restoration of 15% of degraded ecosystems (Target 15), and

the maintenance of human impacts within “safe ecological limits”

(Target 4; Secretariat of the Convention on Biological Diversity,

2010). The United Nations 2030 Sustainable Development Goals

(SDGs) calls for the protection, restoration, and sustainable use of

ecosystems and the halting and reversal of land degradation and bio-

diversity loss (Goal 15; Cowie et al., 2018). Alongside these multilat-

eral agreements are complementary efforts, such as the Bonn

Challenge that aims to restore 350 million hectares of degraded land

globally by 2030 (Verdone & Seidl, 2017), and the Nature Needs Half

(NNH) initiative that aspires to protect 50% of terrestrial lands to
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conserve the world's biodiversity (Dinerstein et al., 2017). Critical to

successful implementation of these initiatives is the ability to gauge

the current condition of terrestrial ecosystems, including the extent

and configuration of minimally altered lands.

Previous global assessments have largely focused on habitat con-

version to develop conservation priorities (Dinerstein et al., 2017;

Olson & Dinerstein, 2002; Watson, Jones, et al., 2016) or to identify

possible tipping points or safe ecological limits (Steffen et al., 2015).

Determining the extent of natural or converted lands alone, how-

ever, fails to capture the variety of human activities that range from

agriculture, urban settlement, roads, energy, and mining: all of which

vary in their spatial distributions and degrees of influence on biodi-

versity and ecosystem functioning. In addition, it does not account

for the cumulative effects of multiple human activities. Individual

impacts when in isolation can be negligible, but when they accumu-

late from several development projects co‐occurring in a region, dire

outcomes for biodiversity and ecosystems can result (Raiter, Possing-

ham, Prober, & Hobbs, 2014).

Here, we provide a comprehensive and continuously scaled spa-

tial assessment of the estimated impact of 13 anthropogenic stres-

sors across all terrestrial lands, biomes, and ecoregions. To do so, we

used the human modification (HM) model (Theobald, 2013), which

accounts for the spatial extent, intensity, and co‐occurrence of

human activities to derive the potential magnitude of impact on ter-

restrial systems for a parsimonious list of stressors (Salafsky et al.,

2008). Using the most recent, spatially explicit global datasets (me-

dian year of 2016), for each 1 km2 area globally, we map the physi-

cal extent of human settlement (population density and built‐up
areas), agriculture (cropland and livestock), transportation (major

roads, minor roads, two tracks, and railroads), mining, energy produc-

tion (oil wells and wind turbines), and electrical infrastructure (pow-

erlines and nighttime lights). We then weight their spatial extents by

their intensity levels, as informed by independent measures of the

non‐renewable energy required to maintain different land use activi-

ties (Brown & Vivas, 2005). The result is an empirically based, con-

tinuous 0–1 metric that reflects the proportion of a landscape

modified by humans, which is a fundamental indicator of ecological

function (Gustafson & Parker, 1992).

Relative to previous global terrestrial threat maps (Ellis et al.,

2010; Geldmann, Joppa, & Burgess, 2014; Venter et al., 2016), we

incorporate more recent global‐scale datasets and a greater number

of anthropogenic drivers. We include a greater coverage of trans-

portation infrastructure that is known to trigger human encroach-

ment and accelerate ecosystem degradation (Ibisch et al., 2016) and

extractive activities that increasingly cause large‐scale land change

(Kiesecker & Naugle, 2017) and have high impact on biodiversity

(Schulze et al., 2018). Unlike other approaches that rely on categori-

cal land system mapping (Van Asselen & Verburg, 2013; Ellis &

Ramankutty, 2008) or ad hoc categorical scoring (Sanderson et al.,

2002), our cumulative human modification map (HMc) supports

thresholding along a continuous gradient of land modification values

to evaluate landscape structure (Verburg, Asselen, Zanden, & Ste-

hfest, 2013): a component essential for robust cumulative impact

assessments (Halpern & Fujita, 2013) and fragmentation analyses

(Haddad et al., 2015; Halpern & Fujita, 2013; Taubert et al., 2018).

We apply the HMc map to provide an update of the extent to

which human activities have modified terrestrial lands globally. We

characterize the degree of human modification of ecosystems and

quantify the amount and spatial configuration of low modified lands

(i.e., natural areas relatively free from human alteration). We show

clear differences in terrestrial modification across biomes and ecore-

gions and strong variability within each. We llustrate how this gradi-

ent metric provides novel insights to prioritize global conservation

and mitigation efforts. We find that moderately modified ecosystems

dominate the terrestrial biosphere and fall within critical land use

thresholds. Thus, we highlight these regions as timely conservation

priorities, where proactive spatial planning is urgently needed to

maintain biodiversity and ecosystem function before important envi-

ronmental values are lost.

2 | MATERIALS AND METHODS

2.1 | Stressor data

We considered human activities that directly or indirectly alter or

impact natural lands based on an existing threat classification system

(Salafsky et al., 2008). We identified five major categories of stres-

sors for which we could acquire global spatial data on indicators (or

proxies) at resolution of 1 km2: (a) human settlement (population

density, built‐up areas), (b) agriculture (cropland, livestock), (c) trans-

portation (major roads, minor roads, two tracks, railroads), (d) mining

and energy production (mining, oil wells, wind turbines), and (e) elec-

trical infrastructure (powerlines, nighttime lights). We limited our

assessment to stressors for which we could assemble global cover-

age on spatially explicit features from publicly available data pro-

duced at 1‐km2 or at scale supportive of this resolution (i.e.,

>1:2,000,000). We selected this resolution to promote spatial con-

sistency in stressor mapping and to capture heterogeneity in stressor

values within units relevant for global‐scale assessments (Halpern &

Fujita, 2013; Verburg et al., 2013). For each stressor, we relied on

the most recent data to capture contemporary land status, with

median and mean dates of 2016 and 2014, respectively.

We integrated data derived from remotely sensed imagery and

ground‐based inventories, an approach deemed useful to measure

land use intensity (Kuemmerle et al., 2013). For human settlement,

we used population density from the 2015 UN‐adjusted, Gridded

Population of the World dataset (Doxsey‐Whitfield et al., 2015), and

built‐up areas from the Global Human Settlements Layer (Pesaresi

et al., 2013). For agriculture, the Unified Cropland Layer (Waldner

et al., 2016) provided our cropland estimates, while the Gridded

Livestock of the World v2 database (Robinson et al., 2014) identified

livestock densities. For transportation that included major roads,

minor roads, two tracks, and railroads, we used OpenStreetMap

(OSM) data (Retrieved from www.openstreetmap.org on 02/1/2016;

Barrington‐Leigh & Millard‐Ball, 2017), augmented with gRoads v1

(Center for International Earth Science Information Network, CIESIN,

2 | KENNEDY ET AL.

www.openstreetmap.org


Columbia University & Information Technology Outreach Services,

ITOS, University of Georgia, 2013) and Digital Chart of the World

(DCW) vMap0 (Danko, 1992) for both roads and railways, respec-

tively. For mining and energy production, we again used OSM data

to calculate the proportion of each 1‐km2 cell comprised of mining,

oil wells, or wind turbines. For electrical infrastructure, we mapped

above‐ground powerlines using OSM data augmented with DCW

data and nighttime lights using the most recent version of the

Defense Meteorological Satellite Program (DMSP) Operational Lines-

can System (OLS) nighttime lights (Elvidge et al., 2001). We exam-

ined the spatial overlap and the correlations of the 1‐km2 spatial

extent of each of the 13 human stressor indicators in the HMc map.

Overall stressors were only weakly spatially correlated (r ≤ 0.58) and

had low spatial overlap (≤38%, except 86% between livestock and

human population) (see SI “Stressor correlations and spatial overlap”

section). Further details on the source layers, their resolutions and

data processing are provided in the Supporting Information

Appendix S1, Methods section.

2.2 | Human modification model

We mapped the cumulative degree of human modification across

global terrestrial lands building on an established approach (Theo-

bald, 2013). HMc was calculated as the per‐pixel (1 km2) product

(HMs) of the spatial extent (He) and expected intensity of impact (Hi)

across 13 human stressors (s) (e.g., human settlement, agriculture,

energy production), such that HMs = He × Hi. Stressors were then

aggregated to a cumulative score using a “fuzzy algebraic sum” (Bon-

ham‐Carter, 1994):

HMc ¼ 1:00�
Yn

s¼1

ð1� ðHMsÞÞ:

The fuzzy sum is an increasive function that assumes the contri-

bution of a given factor decreases as values from other stressors co‐
occur. This approach ensures that HMc values are at least as large as

the largest stressor indicator value, but that the additional contribu-

tion of a given indicator decreases as values from other indicators

overlap, and ultimately converge to 1.00 (regardless of the number

of stressors), thereby supporting the principle of parsimony and cali-

brating landscape impacts as a continuous gradient that better cap-

ture real‐world patterns and conditions (Perkl, 2017). Aggregating

individual factors for the mapping of landscape integrity or human

modification through the fuzzy sum formula has seen increased use

(Bui, Pradhan, Lofman, Revhaug, & Dick, 2012; Perkl, 2017) since its

mainstream introduction (Malczewski, 1999).

Prior to summation, both He and Hi values were scaled from 0.00

to 1.00. He values were rescaled based on the proportion of con-

verted land for built‐up areas, cropland, roads, powerlines, oil wells,

wind turbines, mines, or the log[X + 1] transformed values for

human population, livestock numbers, nighttime lights (see section

below). He values were determined from spatially explicit datasets

and published information on average physical footprint sizes (see

Supporting Information Table S1). Hi values ranged from 0.00 (none)

to 1.00 (high) and represented the relative levels of human‐induced
impacts on biological, chemical, and physical processes of lands.

Where possible, Hi values were based on a generalized land use coef-

ficient, termed Landscape Development Intensity (LDI), that captures

the per‐unit amount of non‐renewable energy required to maintain a

human activity (Brown & Vivas, 2005) (See Supporting Information

Appendix S1, Methods for further details on this metric). Unlike

human threat index‐scoring approaches that have relied on ordinal or

interval scales (Sanderson et al., 2002; Venter et al., 2016), Hi values

are measured on a ratio scale with meaningful differences: for exam-

ple, 0.00 indicating no impact and 0.25 indicating half the intensity of

impact of 0.50. We accounted for the uncertainty in Hi by randomly

selecting values from a uniform distribution (100 iterations) between a

reported MIN and MAX range of intensity values (Supporting Informa-

tion Table S2). The final cumulative HMc map was the average of all

generated HMc values and had values ranging from 0.00 (no modifica-

tion) to 1.00 (highly modified land), thereby resembling a likelihood

value. See Supporting Information Appendix S1, Methods for further

details on this model and its assumptions.

2.3 | Data projection and representation

We analyzed all terrestrial lands excluding Antarctica. We identified

terrestrial lands using the ESA CCI land cover dataset (Defourny et al.,

2016) and selected 1 km2 cells with at least one 300‐m cell identified

as terrestrial land. Prior to any processing, all spatial data were con-

verted to the Mollweide projection with WGS84 datum. We projected

continuous value raster datasets using bilinear resampling and nomi-

nal‐valued raster datasets using a nearest neighbor routine. All vector

datasets were projected prior to converting data to raster format. All

spatial data processing was performed using ESRI's ArcGIS v10.4 soft-

ware with the Spatial Analyst extension for raster analysis.

2.4 | Regional variation in HMc

To inform global and regional decision‐making and to facilitate com-

parisons with other terrestrial maps (see Supporting Information

Appendix S1, material for details), we summarized the HMc per

biome and ecoregion. Biomes and ecoregions are natural boundaries

widely used to guide conservation prioritization (Dinerstein et al.,

2017; Hoekstra, Boucher, Ricketts, & Roberts, 2005; Olson & Diner-

stein, 2002). Ecoregions define geographically distinct assemblages

of species and natural communities within biomes and are consid-

ered ecosystems of regional extent. For spatial boundaries, we used

the revised Ecoregions 2017 (Dinerstein et al., 2017), but excluded

those ecoregions within the Antarctic Realm, classified as “Rock and

Ice,” and with <100 km2 of HMc data coverage (leaving 803 ecore-

gions within 14 biomes and 7 biogeographic realms; Hoekstra et al.,

2005; Venter et al., 2016; Watson, Shanahan, et al., 2016). For a

spatial map of ecoregions, biomes, and biogeographic realms, see

http://ecoregions2017.appspot.com/ (Dinerstein et al., 2017).

We calculated the minimum, maximum, mean (±SD), median

(±MAD), and the distribution of HMc values across all lands globally
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and for each biome and ecoregion. Based on the global, non‐normal,

distribution of HMc values (median = 0.1 ± 0.1 MAD) and in a man-

ner consistent with literature (Alkemade et al., 2009; Brown & Vivas,

2005; Gustafson & Parker, 1992), we binned median HMc values

into four modification classes: “low” (0.00 ≤ HMc ≤ 0.10), “moder-

ate” (0.10 < HMc ≤ 0.40), “high” (0.40 < HMc ≤ 0.70), and “very

high” (0.70 < HMc ≤ 1.0). We assigned low modification to areas

with median HMc values on the lower half of the distribution glob-

ally (≤0.1). We assigned moderate modification to those areas with

median HMc values on the higher half of the distribution globally

but not >0.4. We used HMc = 0.4 to demarcate a transition from a

moderate to a highly modified state, because it matches the critical

habitat threshold of ~0.60 based on percolation theory (Gustafson &

Parker, 1992): a framework used to analyze fragmentation structure

(Taubert et al., 2018) and shown to empirically relate to species

threshold responses to habitat loss (Swift & Hannon, 2010). This

value also corresponds to low‐intensity agriculture in our assess-

ment, thus, approximates a transition to a human‐dominated state.

Finally, we based the high to very high breakpoint (0.7) on equal bin-

ning of the interval values in a manner consistent with empirical syn-

theses (Alkemade et al., 2009; Brown & Vivas, 2005). Applying

categories to the continuous HMc value aids in the interpretation of

land patterns, with our rationale detailed in the Supporting Informa-

tion Appendix S1. At the same time, thresholding continuous HMc

values remains flexible and can be evaluated empirically to delineate

“natural” or “wild” locations or other breakpoints as determined by

ecosystem‐specific responses.

2.5 | Characterizing land fragmentation

We calculated the median (±MAD) Euclidean distance away from

low modified areas (HMc ≤ 0.1) to those with higher degree of

human modification (HMc > 0.1) and characterized the edge distance

distributions (i.e., using threshold (t) of 0.1). We applied the Eucli-

dean distance to edge because it is a widely used fragmentation

metric and recently applied to assess forested biomes (Haddad et al.,

2015). We calculated distances (after removing rock and ice and

water bodies) using an equidistant global projection based on cell

centroids, but then subtracted these distances by the cell width

(1,000 m) to capture cell adjacencies as 0 m from an edge. Given the

1‐km resolution of the HMc map, the 0–1 km edge distance repre-

sents adjacency to modified lands. These distances were then repro-

jected back into Mollweide coordinate system using bilinear

interpolation. We calculated distances across all 1 km2 cells globally

and across all biomes and ecoregions classified as low, moderate,

high, and very high. In addition to the 0.1 threshold (t), we also cal-

culated edge distances across the gradient of HMc values (i.e., t > 0

to > 0.9, in increments of 0.1). Although the median distance from

modified lands increases with higher degrees of modification (from

t = 0 to t > 0.9), the general patterns for biome and ecoregion clas-

sifications were consistent (Supporting Information Figure S16).

Therefore, we focused on the results for low modified lands

(t > 0.1). We note that low modified lands are those areas with low

mapped human influence and are not necessarily equivalent to the

extent of native vegetation in a region.

2.6 | Validation procedures

We assessed the accuracy of the mapped HMc values based on

independent visual interpretation of high‐resolution imagery, building

on established methods (Wickham et al., 2017) and other global

analyses (Fritz et al., 2017). We relied on aerial or satellite imagery

using Google Earth (majority date of 2015 and majority resolution of

<5 m except for urban areas represented typically at ~1 m). We

selected 1,000 plots (~1 km2 “chip”) using the Global Grid sampling

design (Theobald, 2016), which provided a spatially balanced and

probability‐based random sample across the global land extent (ex-

cluding Antarctica) that was stratified on a rural to urban gradient

using “stable night‐lights” imagery (Elvidge et al., 2001). Per plot, we

selected 10 simple‐random locations (for a total of 10,000 subplots)

and recorded several land attributes using the Global Land Use

Emergent Database (GLUED) protocol (Global Land Use Emergent

Database Group, 2016), identifying land cover class, land use class,

dominant and secondary human stressor, and percent human modi-

fied. Similar to the HMc map, the GLUED protocol also measures the

degree of human modification as the product of the spatial extent

(He) and its intensity (Hi): where He is the percent area modified by a

human activity within a 100 m radius, and Hi is an estimate of the

intensity of land use and/or features modifying an area based on

expert‐informed guidelines. The final degree of HM was determined

using a lowest‐highest‐best estimate elicitation procedure, shown to

reduce bias in expert assessments (Speirs‐Bridge et al., 2010). We

evaluated the mapped HMc relative to the visual estimates based on

correlation coefficients and mean absolute error (MAE). These met-

rics were calculated after removing locations dominated by water

and averaging best‐guess estimates for plots with more than three

subplots (N = 989 plots, 9,846 subplots). We also determined the

number of mapped HMc values and GLUED estimates within agree-

ment and scored ±20% as a match (following Venter et al., 2016).

See the “Technical validation” section in the Supporting Information

Appendix S1 for further details.

2.7 | Data availability

The 1‐km2 resolution HMc map is publicly available on figshare (Ken-

nedy, Oakleaf, Theobald, Baruch‐Mordo, & Kiesecker, 2018). Similar

to other global threat datasets, it was designed to assess macro‐eco-
logical patterns resulting from human stressors at broad spatial

extents (e.g., across countries, ecoregions, biomes as done in our

analysis and others) (Geldmann et al., 2014; Halpern et al., 2008;

Venter et al., 2016). It can also be used to prioritize where more

refined landscape assessments are needed to evaluate resource con-

dition, spatial structure, and connectivity (Dickson et al., 2017;

McGuire, Lawler, Mcrae, Nuñez, & Theobald, 2016; Perkl, 2017).

Our analytic approach offers a repeatable, consistent, and transpar-

ent method that can be readily adapted using more detailed and
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finer‐scale datasets for land use planning (Theobald, Monahan, et al.,

2016; Theobald, Zachmann, et al., 2016).

2.8 | Comparison of HMc with other global threat
maps

We outlined the methodological differences between the HMc map and

the 2009 Human Footprint (HF) map (Venter et al., 2016) and compared

their outputs based on (a) a standardized 0–1 range of values, (b) their

original range of values, and (c) original values binned into five classes of

none (no presence of stressor), low, moderate, high, and very high

according to each study's protocol. First, we compared the global and

ecoregional score distributions using the normalized HF, where we com-

pared means, medians and calculated Pearson's correlation on the val-

ues. Second, we compared pixel and ecoregional classifications resulting

from the original HF scores and HMc values, using their respective 5‐cat-
egory classification scheme. Alongside a comparison with the 2009 HF

map, we also examined the distribution of the HMc values within

anthropogenic biomes (available at: http://ecotope.org/anthromes/ma

ps/; Ellis et al., 2010) and categorized ecoregions based on the thresh-

olds of low modified (natural) lands following the Nature Needs Half anal-

ysis by Dinerstein et al. (2017). Given the greater similarity between the

HMc and 2009 HF maps in their non‐categorical approach, we present

only the results for this comparison in the main text. Detailed compar-

isons of the HMc map with the 2009 Human Footprint (HF) map (Venter

et al., 2016), Anthromes map (v2) (Ellis et al., 2010), and Nature Needs

Half ecoregional assessment (Dinerstein et al., 2017) can be found in the

Supporting Information Appendix S1.

3 | RESULTS

3.1 | Global degree of land modification and biome
variation

The HMc of terrestrial lands (excluding Antarctica) was on average

0.19 (±0.22 1SD), with a median of 0.10 (±0.10 1MAD). Strikingly,

F IGURE 1 (a) Cumulative human
modification (HMc) across global terrestrial
lands, categorized as low
(0.00 ≤ HMc ≤ 0.10), moderate
(0.10 < HMc ≤ 0.40), high
(0.40 < HMc ≤ 0.70), and very high
(0.70 < HMc ≤ 1.00). (b) Spatial
distribution of the number of overlapping
human stressors (out of 13 total) per 1‐
km2 area, and the percentage of terrestrial
lands affected globally (in parentheses)
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95% of lands (127.22 million km2) had some indication of human

activities (HMc > 0; Figure 1a). The 5% of unmodified lands (HMc =

0; 6.96 million km2) are concentrated in less productive and remote

areas in high latitudes and dominated by inaccessible permanent

rock and ice or within tundra, boreal forests, and to lesser extent

montane grasslands. Forty‐four percent of terrestrial lands had a low

degree of human modification (0 < HMc ≤ 0.1; 58.96 million km2),

and largely reside within the world's deserts and boreal forests (Fig-

ure 2a). Consequently, the five least modified biomes are tundra, bor-

eal forests or taiga, deserts and xeric shrublands, temperate coniferous

forests, and montane grasslands and shrublands. These biomes had

median HMc values ≤0.1 and were dominated by low modified lands

that largely reside ≥10 km away from more modified edges (Figures

2b and 3, Supporting Information Table S7).

The remainder of the world's lands had a moderate to high

degree of modification: with 34% categorized as moderate

(0.1 < HMc ≤ 0.4; 45.63 million km2), 13% categorized as high

(0.4 < HMc ≤ 0.7; 17.13 million km2), and 4% categorized as very

high modification (0.7 < HMc ≤ 1.0; 5.49 million km2). Tropical and

subtropical grasslands, savannas, and shrublands, tropical and subtropi-

cal moist broadleaf forests, flooded grasslands and savannas, and trop-

ical and subtropical coniferous forests biomes exhibited intermediate

modification: with median HMc values ~0.20, high percentages

(47%–64%) of moderately modified lands, and up to 25% of highly

to very highly modified lands (Figure 3a). The most modified

biomes are temperate broadleaf and mixed forests, tropical and sub-

tropical dry broadleaf forests, Mediterranean forests, woodlands, and

scrub, mangroves, and temperate grasslands, savannas, and shrublands.

These five biomes had median HMc values ranging from 0.22 to

0.38, with 28%–48% of their land surface under high to very high

modification (Figure 3a). Across all biomes, tropical and subtropical

coniferous forests, tropical and subtropical dry broadleaf forests, man-

groves, and flooded grasslands and savannas are the most frag-

mented: with ~30%–36% of their low modified lands located

adjacent to a modified edge, and 60%–69% within 5 km (Fig-

ure 3b).

F IGURE 2 Global maps of (a) low
modified lands (HMc ≤ 0.10), and (b) their
median distance (in km) to areas of higher
modification (HMc > 0.1). Given the 1‐km2

resolution of the HMc map, the 0–1‐km
edge distance represents adjacency to
modified areas. See Supporting Information
Figures S14 and S15 for ecoregional
distributions of the percentage of low
modified lands and their median distance
to modified edges, respectively
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3.2 | Cumulative and dominant stressors

The vast majority of the terrestrial surface, 84%, experiences multi-

ple human stressors (Figure 1b). Eighty‐two percent of low and mod-

erately modified lands had one to two overlapping stressors,

whereas 65% of high and 92% of very highly modified lands had ≥4

overlapping stressors. On average, the number of stressors declines

with declining modification: 5.45 (±1.53), 4.46 (±1.48), 2.68 (±1.01),

1.64 (±0.78) stressors co‐occur on very high, high, moderate, and

low modification lands, respectively. Cumulative stressors are con-

centrated in North America and Europe, and to a lesser extent in the

most developed regions of Southern and Eastern Asia, Central Amer-

ica, and Southern and Western Africa. When stressors spatially co‐
occurred, they were positively correlated, except for agriculture and

human settlement, roads, or built‐up areas (see Supporting Informa-

tion Appendix S1 “Stressor correlations and spatial overlap” section

and Supporting Information Tables S5 and S6).

Dominant drivers were, unsurprisingly, those that cause the lar-

gest land conversion: 48% of lands were predominately modified by

human settlement (47.47 million km2 by human population and

525.22 thousand km2 by built‐up areas) and 40% by agriculture

(35.42 million km2 by livestock and 18.35 million km2 by cropland).

The distributions of dominant stressors were spatially heteroge-

neous: for example, human settlement was mapped as the dominant

driver in large regions of Africa, Eastern Europe, and Western and

Southeastern Asia, and agriculture in large parts of North America,

South America, Western Europe, Eastern Asia, and Australia (see

Supporting Information Tables S5, “Dominant stressors” section and

Supporting Information Figure S13).

3.3 | Ecoregion variation and classification

Over half of ecoregions (52%, N = 419) are classified as moderately

modified, 30% of ecoregions (N = 238) are classified as low modifi-

cation, and 19% (N = 133) of ecoregions are classified as either high

(17%) or very high (2%) modification (Figure 4). In the following sec-

tions, we characterize this ecoregional gradient based on their

degree of modification across all lands, their amount and

F IGURE 3 (a) Percentage of terrestrial
land along the gradient of cumulative
human modification (HMc) per biome
relative to globally. (b) Percentage of low
modified lands within edge distance classes
(km) per biome relative to globally based
on Figure 2b. Median HMc and median
edge distances indicated by black dots,
respectively. Given the 1‐km2 resolution of
the HMc map, the 0–1‐km edge distance
represents adjacency to modified areas.
See Supporting Information Table S7 for
the degree of HMc across all biomes
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fragmentation of low modified (natural) lands, and their frequency

within biomes and realms.

3.3.1 | Low modified ecoregions

On average, 83% (±16.33) of the terrestrial surface of low modified

ecoregions is in low modification. Seventy‐six percent of these

ecoregions (N = 181) have ≥70% of low modified lands, and all

ecoregions have >50% low modified lands (Figure 5a–d and Sup-

porting Information Figure S14b). These low modified lands com-

monly reside 34.86 ± 27.41 km away from more modified areas,

and only 5% are within ≤1 km of a modified edge (and 14% within

≤5 km) (Supporting Information Figure S15). Although all biomes

and all biogeographic realms retain some percentage of low modi-

fied ecoregions, four biomes and two realms have only one to

three remaining (Figure 4b,c): one in the tropical and subtropical dry

broadleaf forest biome (New Caledonia dry forests ecoregion) (Fig-

ure 5c), one in the mangroves biome (New Guinea mangroves ecore-

gion), one in the tropical and subtropical coniferous forests biome

(Bahamian pineyards ecoregion), three in the flooded grasslands and

savannas biome (Etosha Pan halophytics, Saharan halophytics, and

Makgadikgadi halophytics ecoregions; Figure 5b), one in the Oceania

realm (Hawai'i tropical high shrublands ecoregion), and three in the

Indomalayan realm (Northern Triangle temperate and subtropical

forests and Borneo montane rain forests ecoregions) (Supporting

Information Table S8).

3.3.2 | Moderately modified ecoregions

Moderately modified ecoregions have on average 70% (±17) of

their lands in a moderate degree of degradation, and only 15%

(±15) in low modification (Figure 5e–h). Most (75%, N = 313) have

≤20% of low modified lands, and none have >50% of low modified

lands (Supporting Information Figure S14b). Further, most of these

low modified lands (54%) are located ≤5 km from a modified edge

(median: 4.21 ± 4.01 km), and 26% within 1 km (Supporting Infor-

mation Figure S15). Within the range of habitat amount (i.e.,

0%−50% of low modified lands) and fragmentation (i.e., 0 − 25 km

edge distance) considerable variation exists, but most of these

ecoregions have small amounts of low modified land and high

levels of fragmentation across biomes, continents, and realms (Fig-

ure 6). Mangroves and tropical and subtropical coniferous forests

biomes contain the largest percentage of moderately modified

ecoregions (84% and 86%, respectively). However, these ecoregions

are most common in all biomes and realms, except for the four

least modified biomes (tundra, boreal forests or taiga, deserts and

xeric shrublands, and temperate conifer forests) and two realms

(Nearctic and Australasia).

F IGURE 4 Cumulative human modification (HMc) of the terrestrial ecoregions of the world based on their (a) median HMc score (with
percentages), and their distributions within (b) the 14 terrestrial biomes and (c) the seven terrestrial biogeographic realms
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3.3.3 | Highly modified ecoregions

Highly modified ecoregions tend to be a mixture of highly modified

(50% ±12), moderately modified (27% ±12), and very highly modified

(21% ±13) lands (Figure 5i‐l). Very highly modified ecoregions are

dominated by very highly modified lands (70% ±12) and to lesser

extent highly modified lands (23% ±12; Figure 5m–p). On average,

these ecoregions have <1% (±3) of low modified lands, with a maxi-

mum of 23% in highly modified and 9% in very highly modified

ecoregions (Supporting Information Figure S14b). These few remain-

ing natural areas are located in close proximity to disturbed areas.

Approximately 50% are adjacent to modified areas and ~85% are

within 5 km; and median edge distances are 0.72 ± 0.72 km and

1.42 ± 1.39 km for high and very highly modified ecoregions, respec-

tively (Supporting Information Figure S15). Highly modified ecore-

gions are found in all realms and all biomes, except for tundra and

boreal forests or taiga, but most are concentrated within three

biomes (31% in tropical and subtropical moist broadleaf forests, 20%

in temperate broadleaf and mixed forests, and 17% in tropical and sub-

tropical dry broadleaf forests) and three realms (30% in Indomalayan,

30% in Palearctic, and 19% in Neotropic).

3.4 | Validation

We found strong agreement between our mapped HMc values and

those determined from independent visual interpretation of high‐res-
olution images. For the 989 ~ 1 km2 plots (9,846 subplots) analyzed,

the mapped and visual scores were strongly correlated (r = 0.78),

with an average error of ~14% (MAE =14.18). Relative to visual esti-

mates, 707 plots (71%) were within ±20% agreement (Supporting

Information Figure S3); 212 plots (21%) had higher mapped HMc val-

ues (false positive); and 70 plots (7%) had lower mapped HMc values

(false negative). Higher mapped HMc values largely occurred at high

levels of development (Supporting Information Figure S4) and were

driven by human population densities (which are not directly observ-

able from aerial images) and nighttime lights (resulting from lit “spil-

lover” areas from intense human development into adjacent

undeveloped lands).

3.5 | Comparison of HMc with the 2009 HF map

Relative to the 2009 HF map, the HMc map includes a greater cov-

erage of human stressors (13 stressors vs. 8 stressors included in the

HF); reflects more recent land change (2016 median date of input

stressor layers vs. 2009 for the HF); and captures the physical

extents of human activities at a finer resolution by mapping the pro-

portion of land converted at ≤1 km, without buffering features such

as roads, navigable waterways, and coastlines. At a global scale, we

found that the HMc and normalized HF 2009 maps were strongly

correlated (r = 0.77); but the HMc values (mean ± 1 SD = 0.19 ±

0.22; median = 0.10) tended to be higher than the normalized HF

values (mean ± 1 SD = 0.12 ± 0.14, median = 0.08; Supporting Infor-

mation Figures S5 and S6). At regional (ecoregional) scales, these

maps produced substantially different spatial land patterns, with

lower correlations than at the aggregate global scale and low overlap

between low modified lands (0.04%–40%; Supporting Information

Figure S9a,b). Further, the HMc map delineated 2.3 times more low

modified areas than the HF map and captured smaller fragments

(77% vs. 43% of patches were ≤5 km2 by HMc map and HF map,

respectively) that could provide stepping stone habitats or facilitate

landscape permeability or connectivity (Supporting Information Fig-

ure S10). Based on the classified HMc map, the world is dominated

by moderately modified lands (52%), whereas the HF map classifies

the vast majority of the world (72% of ecoregions) as high or very

highly modified (Supporting Information Figures S7–S9). These differ-

ent results underscore that input data layers that feed into global

assessments, and how they are combined and thresholded, signifi-

cantly influence map outcomes with important implications for sub-

sequent policy recommendations.

4 | DISCUSSION

The global map of human modification, HMc, represents the most

current and comprehensive quantification of the influence of cumu-

lative human activities on Earth's terrestrial lands. We find that land

modification is higher than previous assessments (Ellis et al., 2010;

Geldmann et al., 2014; Venter et al., 2016), that less of the world's

land remains unaffected by humans (5% relative to a recent estimate

of 19%; Venter et al., 2016; Watson, Shanahan, et al., 2016), and

that moderately modified ecosystems dominate the terrestrial bio-

sphere (see Supporting Information Appendix S1 for map compar-

isons). At the same time, we show that only 8% of low modified

lands (i.e., natural areas relatively free from human alteration) are

located within 1 km (or adjacent) to a modified edge and 20% are

within 5 km, which extends our understanding of global fragmenta-

tion beyond forested biomes (Haddad et al., 2015; Taubert et al.,

2018).

Our analysis supports the tropical and subtropical dry broadleaf

forests biome as one of most threatened, also identified by Diner-

stein et al. (2017) and Watson, Jones, et al. (2016) based on levels

of habitat conversion relative to protection. Based on the HMc, this

biome has the lowest percentage of low modified lands (7%), the

second highest percentage of highly modified lands (40%), and the

greatest adjacency to modified areas (68% of low modified lands are

within 5 km of an edge). It also has the highest percentage of highly

modified ecoregions (45%) and only one low modified ecoregion left.

Alarmingly, we further find that half of the world's biomes have

some cause for concern: either because they have little remaining

low modified lands (i.e., six biomes contain ≤20%), retain only a

handful of low modified ecoregions (i.e., six biomes have ≤10 ecore-

gions), or are potentially vulnerable to fragmentation effects (i.e.,

four biomes have 60%–69% of natural lands in close proximity to

disturbed areas). Of the 803 ecoregions analyzed, strikingly, 30%

and 50% of ecoregions retain ≤1% and ≤10% of low modified lands,

respectively. Based on IUCN Red List of Ecosystems (Keith et al.,

2013) and Nature Needs Half (Dinerstein et al., 2017) criteria, we
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classify 57% ecoregions to be Critically Endangered/Nature Imperiled

(relative to 24% from Dinerstein et al. (2017)) and 14% of ecoregions

to be Endangered/Nature Could Recover (relative to 27% from Din-

erstein et al. (2017); Supporting Information Figure S17).

We find that less than a third of terrestrial ecoregions have a

low degree of land modification and remain relatively free from

human modification. These ecoregions retain most of their natural

lands, which are often distant from human settlements, agriculture,

and other modified environments. Thus, they represent vital areas

where biodiversity and ecological processes are expected to be rela-

tively intact and resilient (Keith et al., 2013; Swift & Hannon, 2010)

and regional‐scale ecosystems services may be supported (e.g., cli-

mate regulation, carbon sequestration, and water provisioning; Wat-

son et al., 2018). Opportunity exists in these regions to set‐aside
large expanses of natural lands from human use to expediently meet

conservation aspirations, such as those under the CBD, Aichi targets,

F IGURE 5 The gradient of land modification across representative ecoregions classified as low (0.00 ≤ median HMc ≤ 0.10) (a–d), moderate
(0.10 < median HMc ≤ 0.40) (e–h), high (0.40 < median HMc ≤ 0.70) (i–l), and very high (0.70 < median HMc ≤ 1.00) (m–p) within the four
biomes with all four modification classes. Each 1 km2 area is color‐coded corresponding to its HMc score as depicted in Figure 1. Note that
the maps vary in scale. See Supporting Information Appendix S1, Results section for details on the ecoregions depicted in this figure, and
Supporting Information Table S8 for the degree of HM across all 803 ecoregions included in our analysis
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or NNH, especially where they also harbor rare, threatened, or biodi-

verse species or ecosystems. Spatial land planning by governments,

private landowners, and civil society groups in these low modified

ecoregions should focus on preventing and confining habitat loss,

such that these ecoregions remain above critical landscape fragmen-

tation thresholds (Desmet, 2018). Encouragingly, all biomes and all

realms retain some low modified ecoregions, but the few strongholds

that remain within biogeographic regions warrant special attention.

At the other end of the spectrum are one‐fifth of ecoregions that

are extensively altered by human activities. These highly modified

ecoregions are dominated by dense human settlements, agricultural

land uses, networks of infrastructure, and other industrial activities.

These lands are commonly subject to five or more human stressors

simultaneously. More than 80 percent of these ecoregions retain 1%

or less of low modified lands, and all fall below habitat thresholds

expected to maintain native biodiversity over the long‐term (Keith

et al., 2013; Swift & Hannon, 2010). Furthermore, the few remaining

natural areas are surrounded by high levels of development.

Dinerstein et al. (2017) acknowledge that in such heavily altered

ecoregions, a Half Protected goal is simply “inconceivable.” Thus, a

more viable mitigation pathway to reconcile economic and environ-

mental goals is likely within an ecosystem services paradigm: that is,

restoring benefits that natural systems provide to humans, such as

nutrient retention, soil fertility, carbon sequestration, pollination ser-

vices, flood mitigation (Tallis, Kennedy, Ruckelshaus, Goldstein, &

Kiesecker, 2015). Restored habitat, particularly in degraded land-

scapes, often fail to fully recover lost biodiversity or only after con-

siderable time lags (Benayas, Newton, Diaz, & Bullock, 2009). At the

same time, rehabilitation of degraded lands can regain many ecosys-

tem features, particularly certain ecosystem services (Benayas et al.,

2009) even in relatively short timeframes (Jones & Schmitz, 2009).

Global initiatives, such as The Bonn Challenge, are advancing large‐
scale restoration within degraded forest ecosystems to enhance

ecosystem functions and services to support human well‐being
(Lamb, 2014). Under such initiatives, spatial land planning within

highly modified ecoregions will require not only restoring and

F IGURE 6 The relationship between the percentage of low modified lands (HMc ≤ 0.1) and their median distance (in km) to modified areas
(HMc > 0.1) for (a) all moderately modified ecoregions and (b) representative moderately modified ecoregions, shown in location and (c) as a
scatter plot. Moderately modified ecoregions are those with median HMc values on the lower half of the distribution globally but not >0.4, a
critical habitat threshold based on percolation theory (Gustafson & Parker, 1992). Low modified lands are those areas with relatively low
mapped human influence and are not necessarily equivalent to the extent of native vegetation. See Supporting Information Appendix S1,
Results section for details on the ecoregions depicted in this figure
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connecting the few remaining natural areas, but more importantly,

managing and improving the dominant, intervening human land uses

to minimize negative effects on biodiversity and ecosystems (Dris-

coll, Banks, Barton, Lindenmayer, & Smith, 2013; Kennedy, Zipkin, &

Marra, 2017).

The majority of the world's ecoregions fall within the middle of

these low and high extremes, including 65% prioritized for excep-

tional concentrations of species diversity and endemism (i.e., Glob-

al200 ecoregions; Olson & Dinerstein, 2002). These are moderately

modified regions comprised of natural remnants altered to varying

degrees amidst a human‐modified matrix. Most of these lands are

subject to only one or two anthropogenic stressors, but a gradient

of land use intensity exists. Notably, these ecoregions retain up to

50% of low modified lands that vary considerably in spatial configu-

ration. Thus, they fall within a critical range where habitat loss (Swift

& Hannon, 2010) and habitat fragmentation (Gustafson & Parker,

1992; Taubert et al., 2018) thresholds occur, and where there can

be irreversible regime shifts in biodiversity (Pardini, Arruda, Gardner,

Prado, & Metzger, 2010) and in the provision of ecosystem services

(Mitchell, Bennett, & Gonzalez, 2015). These findings are consistent

with a recent continent‐wide assessment that suggest that global

tropical forest fragmentation is close to a critical threshold (Taubert

et al., 2018).

Circumventing losses and managing trade‐offs among economic

activities, biodiversity, and ecosystem services are vital in these

moderately modified ecoregions and required under the SDGs

(Cowie et al., 2018). Because these moderately modified regions are

expected to exhibit higher variability in landscape structure and frag-

mentation than the low or highly modified ecoregions (Villard &

Metzger, 2014), multi‐objective spatial planning (Kennedy et al.,

2016) and optimal habitat protection and restoration strategies

(Possingham, Bode, & Klein, 2015) are needed to maintain critical

levels of habitat amount and configurations and ensure viable con-

servation outcomes. These are regions that, without distinct recogni-

tion of their vulnerability to further land change, may fall through

the cracks under current conservation schemes (Brooks et al., 2006).

Further prioritization of these moderately modified ecoregions could

account for their conflicts or opportunities for conservation interven-

tion, for example, by considering their risk to future development

(Oakleaf et al., 2015), their socioeconomic and political climate (Car-

ter et al., 2017) and private landownership and tenure systems

(Robinson et al., 2018), among other factors likely to influence sus-

tainable outcomes (Tulloch et al., 2015). We propose that these are

key areas to direct research to improve cross‐system knowledge on

the ecological risks of cumulative development impacts and stressor

interactions, and the potential land use thresholds or safe ecological

limits for both conservation and ecosystem services.

We caution that our results be interpreted in light of the fol-

lowing assumptions and limitations. First, while the HMc maps 13

different stressors, it does not account for all human threats (Salaf-

sky et al., 2008): in particular timber production, recreation, pas-

tureland, pollution, and invasive species due to data limitations

(Geldmann et al., 2014; Kuemmerle et al., 2013). We also did not

consider climate change due to the uncertainty in the location and

directionality of its impact on terrestrial systems (Geldmann et al.,

2014) and its diffuse nature making it unstoppable by localized

human intervention (Tulloch et al., 2015). Further, the interaction

between land use and climate change on ecosystems may be better

characterized through a coupled modeling process (Prestele et al.,

2017). Although some of the missing stressors may be associated

with and captured by those included (Perkl, 2017), we likely under-

estimated human impacts (e.g., northern high latitudes most

affected by climate change). Second, although our use of Open-

StreetMap data vastly improved the detail, accuracy, and coverage

of transportation, energy, and mining sectors that are difficult to

detect by satellite imagery but cumulatively cause significant

impacts (Ibisch et al., 2016), these data are not globally complete

(Barrington‐Leigh & Millard‐Ball, 2017). Third, we weighted stres-

sors based on standardized measures of human‐induced impacts on

biological, chemical, and physical processes of lands (Brown &

Vivas, 2005). While this metric has theoretical, empirical support

for its use as a land use intensity metric (Brown & Ulgiati, 1997)

and has been used to rank disturbance of watersheds and wetlands

(Brown & Vivas, 2005) and to gauge the sustainability of nations

(Siche, Agostinho, Ortega, & Romeiro, 2008), as with most models

requiring empirical parameterization, uncertainties remain (Hau &

Bakshi, 2004). However, our land use intensity weights have been

verified in US landscapes (Theobald, 2013) and fall in line with spe-

cies responses to land use where examined (Supporting Information

Table S3). Fourth, our integration of different stressors assumes

they act in an accumulative but mitigative fashion, which is in line

with empirical evidence that suggests that interactions among

impacts may be more commonly non‐additive than additive (Crain,

Kroeker, & Halpern, 2008; Darling & Côté, 2008). Although we lack

complete understanding of the cumulative effects of multiple stres-

sors, our approach creates a parsimonious index that minimizes

potential bias from correlation of stressors and is robust to the

addition of stressors as new data become available. Fifth, we cate-

gorized the continuous HMc values into low‐to‐very high classes to

aid in the interpretation of macro‐ecological (ecoregional) patterns,

as informed by the global distribution of HMc values, empirical land

intensity metrics (Alkemade et al., 2009; Brown & Vivas, 2005),

and theoretical (Desmet, 2018; Gustafson & Parker, 1992) and

empirical thresholds to habitat loss (Swift & Hannon, 2010; Yin,

Leroux, & He, 2017). We acknowledge, however, that threshold

responses to land use intensity and human activity will be species‐
or region‐specific (Swift & Hannon, 2010) and may be at even

lower levels than previously thought (Betts et al., 2017). Despite

this fact, our binning of HMc values produced spatial patterns of

the degree and percentages of land modification and the number

of stressors that appear meaningful. Further we provide the HMc

based on the original 0.00–1.00 values to provide flexibility in its

use as continuous metric or to threshold based on user needs

(Kennedy et al., 2018). As our understanding improves on how

human activities interact to affect ecosystems, our modeling and

thresholding can be updated accordingly. Despite these limitations,
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we find strong agreement between our mapped and independent

visual estimates of human modification.

Our assessment reveals that the vast majority of the land surface

is subject to multiple stressors. This finding mirrors that for oceans

(Halpern et al., 2008) and reinforces that designing effective land

use planning and mitigation strategies in the Anthropocene require

an improved understanding of the cumulative impacts from different

types of development including how stressors interact with one

another (Crain et al., 2008; Darling & Côté, 2008), and the levels of

development and spatial configurations that may push natural sys-

tems over ecological thresholds or tipping points (Kennedy et al.,

2016; Taubert et al., 2018). A first step is improved cumulative

impact assessments at multiple spatial scales (Canter & Ross, 2010);

our analytical approach offers a robust and generalizable measure of

cumulative human alteration of lands that can be applied at global

(this study and Crooks et al., 2017), national (Theobald, 2013), and

regional (Theobald, Zachmann, et al., 2016) levels.
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Several international initiatives aim to balance development with conservation goals, which requires a comprehensive understanding of the cur-

rent ecological condition of landscapes. We quantified the spatial extent and pattern of human land modification using a cumulative measure

of 13 anthropogenic stressors with median year of 2016. We identified that fewer unmodified lands remain than previously reported and that

most of the world's ecoregions fall at critical land modification thresholds, thus, warrant timely conservation attention.


