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We hypothesize that the North Pacific transition zone chlorophyll front (TZCF) can
episodically deliver enhanced phytoplankton levels that are linked to the emergence
of adult populations of the coral eating starfish Acanthaster planci. In some years, the
seasonally migrating TZCF bathes the northwest Hawaiian Islands with
chlorophyll-a rich waters during the winter months that coincide with peak starfish
spawning and provide ideal conditions for A. planci larval survival. We found signifi-
cant relationships between starfish populations in the North Pacific and the
southernmost latitude of the TZCF, chlorophyll-a concentrations, sea surface tem-
perature, and Ekman transport indices since 1967. We propose that TZCF-triggered
primary outbreaks are followed by secondary outbreaks throughout the region, in
accordance with the surface currents and separated by a sequential time lag. Our
historical confirmation suggests outbreaks are predictable, which has immediate coral
reef conservation and management consequences.

(1982), suggesting that nutrient spikes leading to
phytoplankton blooms, for example from watershed run-
off, enhance Acanthaster larval survival (Birkeland, 1982;
Brodie et al., 2005). High phytoplankton biomass pro-
vides the food-limited starfish larvae with the nutrition
required to develop from bipinnaria to settling (primor-
dial) larvae. Upon settlement Acanthaster feed on
coralline algae and switch their diet to corals after 4–6
months (Yamaguchi, 1973, 1974). Yet, in the last four
decades, repeated outbreaks have occurred on many small
Pacific islands separated by thousands of kilometers, of-
ten simultaneously (Chesher, 1969; Randall, 1972; Marsh
and Tsuda, 1973; Birkeland, 1982). Phytoplankton blooms
resultant from watershed runoff may potentially enhance
Acanthaster survival at the larval stage, but the consider-
able distance between outbreaks, and their similar fre-
quency suggest a larger scale process may trigger out-
breaks in the region.

Alternatively, we provide evidence that a broad ocea-
nographic feature, the transition zone chlorophyll front
(TZCF), is primarily responsible for delivering the en-

1.  Introduction
For decades conclusive evidence regarding the cause

of Acanthaster planci outbreaks has remained elusive. The
coral eating starfish are often reported in populations of
tens to several hundred thousand (Branham et al., 1971;
Goreau et al., 1972; Marsh and Tsuda, 1973), digesting
the living tissue off coral colonies (Moran, 1986). Large
populations of Acanthaster planci have caused extensive
coral mortality in the Pacific and Indian Oceans since the
late 1960s; for example the Great Barrier Reef in Aus-
tralia experienced major outbreaks in the 1960’s and
1980’s, reducing coral cover on many reefs by over 50%
(Cameron et al., 1991; Van Woesik, 1994). Similar sce-
narios have been reported throughout Micronesia and the
central Pacific Ocean (Chesher, 1969; Birkeland, 1982).

Experimental work (Ayukai et al., 1997) supports a
larval starvation hypothesis proposed by Birkeland
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Fig. 1.  Map of the study region showing the proposed Acanthaster outbreak cycle (grey arrow).

Fig. 2.  Comparison of SeaWiFS surface chlorophyll-a (mg/m3) data for a geographic box around Hawaii (22°–28°N, 178°–
160°W) during an Acanthaster non-outbreak (2001) and outbreak year (2005), respectively.
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hanced phytoplankton levels ideal for starfish spawning
(e.g. the emergence of fecund adults) and larval survival
in the northwest Hawaiian Islands. The TZCF separates
nutrient-rich subpolar waters from oligotrophic subtropi-
cal waters across the North Pacific Ocean basin (Polovina
et al., 2001). We hypothesize that the annual, southward
migrations (winter-time low positions) of the TZCF
(Bograd et al., 2004) represent the southerly displacement
of phytoplankton rich waters, and trigger primary
Acanthaster outbreaks. This is consistent with the repro-
ductive biology of the starfish, which shows peak fertil-
ity during the winter months in the North Pacific Ocean
(Branham et al., 1971; P. Houk, pers. obs.). We further
posit that primary outbreaks in Hawaii are followed by
secondary outbreaks throughout the north Pacific Ocean
(Fig. 1). We do not propose that the TZCF is responsible
for the secondary outbreaks, but rather that these are a
consequence of the prevailing ocean surface currents and
the islands’ geographic locality. Here we use historical
data to test our theory. A second example is then presented
to support the idea that oceanically derived phytoplankton
rich waters, other than the TZCF, acted in a similar fash-
ion to produce an Acanthaster outbreak in Palau in 1998.

2. Relationships between Large-Scale Oceano-
graphic Processes and Acanthaster planci
Populations
Depending on the position of the TZCF, relatively

high chlorophyll concentrations can bathe the northwest
Hawaiian Islands during winter months (Fig. 2). Data from

the Sea-viewing Wide Field-of-view Sensor (SeaWiFs)
show that unusually high chlorophyll concentrations ex-
isted throughout the northwest Hawaiian Islands during
the 2004–5 winter as compared with a typical year (Fig.
2). The presence of phytoplankton rich waters was fol-
lowed by Acanthaster outbreak populations on Johnston
Atoll (Brainard et al., 2005), and by sequential outbreaks
in the Marshall (Pinca et al., 2005) and Southern Mariana
Islands (P. Houk, pers. obs.), separated by a ~2 month
time lag (Fig. 1). We propose that phytoplankton rich
waters associated with the TZCF triggered primary out-
breaks in Hawaii, and use historical outbreak data to test
our theory (below). Further, we suggest that North Pa-
cific surface currents (Bonjean and Lagerloef, 2002) link
the TZCF-triggered primary outbreaks in the Hawaiian
Islands with the secondary populations at Johnston Atoll,
the Marshall, and the Mariana Islands (Fig. 1). Surface
currents associated with the North Pacific Gyre report-
edly follow this trajectory, especially during the winter
months (Eldredge, 1983; Bonjean and Lagerloef, 2002;
http://www.oscar.noaa.gov/datadisplay/index.html). Hy-
drodynamic based larval transport models and present day
distributions of coral and gastropod fauna indicate a cor-
ridor for larval transport between Johnston Atoll, the NW
Hawaiian, main Hawaiian, Marshall, and Mariana Islands
(Vermeij et al., 1983; Randall, 1995; Maragos et al., 2004;
Kobayashi, 2006). In support, we found a significant re-
lationship between adult Acanthaster populations in the
Mariana Islands and the southernmost latitude of the
TZCF in the NW Hawaiian Islands over the past 6 years
(Fig. 3). Nevertheless, the mechanism driving the sec-
ondary outbreaks is unknown.

Fig. 3.  Significant relationship found between the winter,
lowest lat i tude of the .15 mg/m3 average monthly
chlorophyll-a contour (considered an anomaly for this re-
gion) in a geographic box around the Hawaiian Islands (22°–
28°N, 178°–160°W), and annually averaged Acanthaster
abundances on Commonwealth of the Northern Mariana
Islands reefs from 2000–2005.

Fig. 4.  Relationships between temperature, Ekman transport,
and SeaWiFs derived chlorophyll-a concentrations during
the winter months (December–February) of 1997–2004 av-
eraged for a geographic box around the Hawaiian Islands
(22°–28°N, 178°–160°W).
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Fig. 6.  Surface chlorophyll-a concentrations (mg/m3) in the northwestern Pacific, including Palau, during an Acanthaster out-
break year (1998) and non-outbreak years (2004, 2005).
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Fig. 5.  Minimum winter (December–February) sea surface tem-
perature and meridional Ekman Transport indices from
1967–2005 for a geographic box around the Hawaiian Is-
lands (22°–28°N, 178°–160°W). Large numbers represent
reported outbreak years (Table 1); (*) Represents the docu-
mentation of non-outbreak starfish populations (Marsh and
Tsuda, 1973; Randall, 1991; Quinn and Kojis, 2003, respec-
tively). There is a significant relationship between histori-
cal Acanthaster outbreaks (Table 1) and Ekman Transport
indices (p = 0.003, logit regression).

Table 1.  Location and citation data for Acanthaster outbreaks
noted in Fig. 5.

3. Migration of the Transition Zone Chlorophyll
Front
The TZCF is a zone of surface convergence where

cool, high-chlorophyll surface waters from the north sink
beneath warm, oligotrophic waters to the south (Polovina

et al., 2001). SeaWiFs data show the TZCF migrating sea-
sonally from 40–45°N in the summer to 30–35°N in the
winter (Polovina et al., 2001), with significant interannual
variability (Bograd et al., 2004). Simple models have
shown that the latitudinal variation of the TZCF depends
upon the amount of light and inorganic nutrients avail-
able for primary production, at a given latitude, and the
extent of vertical mixing (Glover et al., 1994; Chai et al.,
2003). Interannual variability in the magnitude of Ekman
pumping and horizontal divergence driven by the wind
stress curl also determine the southerly extent of the win-
tertime TZCF (Bograd et al., 2004). Cooler sea surface
temperatures and strong equator-ward Ekman transport
are indicative of a more southerly displacement of the
TZCF, which can occasionally extend to the Hawaiian
Islands. Our results indicate that average monthly sea

Event on graph Island Citation

1 (1969–70) Hawaii Branham et al. ,  1971
1 (late 1960’s) Marshall Islands Pinca et al. ,  2005
1 (1967–69) Mariana Islands Chesher, 1969
2 (1979–81) Mariana Islands Birkeland, 1982
3 (1985–86) Mariana Islands Randall et al. ,  1988
4 (2003–05) Johnston Atoll Brainard et al. ,  2005
4 (2003–05) Marshall Islands Pinca et al. ,  2005
4 (2003–05) Mariana Islands P. Houk, pers. obs.
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surface temperatures and meridional Ekman transport
explained 71% and 65% of the variance in surface chlo-
rophyll-a concentrations, respectively, in a geographic box
around the NW Hawaiian islands (178°–160°W, 22°–
28°N) (Fig. 4). The relationships suggest that Ekman
transport and sea surface temperature data, both avail-
able from 1967–present, can be used as a proxy of his-
torical chlorophyll concentrations (Fig. 5).

Relationships found between oceanographic condi-
tions and Acanthaster outbreaks suggest that their
populations are predictable and our hypotheses are test-
able. Here, we utilize historical sea surface temperature
and meridional Ekman transport data for a geographic
region surrounding the Hawaiian Islands from 1967 to
the present; we compared predicted outbreak years with
those reported in the literature (Fig. 5, Table 1). Between
1967–2005, Acanthaster outbreaks in the Mariana Islands,
the Marshall Islands, Johnston Atoll, and the Hawaiian
Islands were significantly related to Ekman transport in-
dices (p = 0.003, logit regression). Notably, the largest
negative Ekman transport occurred in 1968, coinciding
with the first (reported) and largest starfish outbreak on
Guam reefs (Chesher, 1969). During the following year,
observations on the Hawaiian reefs found persistent
populations remaining (Branham et al., 1971). Historical
data support a strong coupling between high
phytoplankton biomass and Acanthaster outbreaks. How-
ever, outbreak populations frequently persist for up to 2.5
years after initiation (Chesher, 1969; Branham et al.,
1971), which are largely dependent upon coral cover (i.e.,
food availability).

4.  Evidence from Palau
We further tested our hypothesis in Micronesia. A

review of SeaWiFs data shows a migrating chlorophyll
front, not related to the TZCF, of varying magnitude and
direction from Indonesia north to Palau, during winter
and early spring (Fig. 6). This feature originates from the
North Equatorial Counter-Current and the Mindanao Eddy
which influence Palau from December–April (Heron et
al., 2006). An Acanthaster outbreak was evident during
the 1998 El Niño Southern Oscillation (Bruno et al., 2001;
P. Houk, pers. obs.), concurrent with the migration of a
large chlorophyll front over Palau (Fig. 6). This second
example advances our hypothesis that the transport of
productive waters to coral reefs is one of the primary
causes of Acanthaster outbreaks in the North Pacific.

5.  Discussion and Summary
The direct relationship between adult populations and

high chlorophyll-a concentrations is perplexing, however,
particularly since settling larvae take ~3 years to reach
adulthood (Yamaguchi,  1973; Zann et al. ,  1987;
Birkeland, 1989). The present data suggest a much shorter

development period, or, more likely, that cooler, chloro-
phyll-rich waters are acting directly upon the adult star-
fish.

Phytoplankton biomass associated with the migrat-
ing TZCF is sufficient to drive ecological food webs and
explain spatial distributions of several fish and mammal
populations (Polovina et al., 2001). Here, we suggest that
high phytoplankton densities favor the emergence of
fecund Acanthaster adults that spawn, allowing for a
high survival of larvae. In support we found that
chlorophyll-a concentrations are significantly positively
related to adult Acanthaster planci populations. We also
suggest that the near-surface circulation within the North
Pacific Ocean most likely provides connectivity among
primary and secondary Acanthaster populations.

Our findings have immediate consequences for many
facets of North Pacific Ocean coral reef ecology. First,
real-time satellite imagery can facilitate the prediction of
A. planci outbreaks, much like ocean warming and coral
bleaching events. Second, armed with predictive capac-
ity, a removal program may be a viable option for many
small island nations with limited management budgets and
a desire to protect economically important reefs. Finally,
our results can stimulate investigations into coral com-
munity dynamics, providing an influential predictor of
past and future disturbances.
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