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Abstract
Physical distancing measures are important tools to control disease spread, especially in 
the absence of treatments and vaccines. While distancing measures can safeguard public 
health, they also can profoundly impact the economy and may have important indirect 
effects on the environment. The extent to which physical distancing measures should be 
applied therefore depends on the trade-offs between their health benefits and their eco-
nomic costs. We develop an epidemiological-economic model to examine the optimal dura-
tion and intensity of physical distancing measures aimed to control the spread of COVID-
19. In an application to the United States, our model considers the trade-off between the 
lives saved by physical distancing—both directly from stemming the spread of the virus 
and indirectly from reductions in air pollution during the period of physical distancing—
and the short- and long-run economic costs that ensue from such measures. We examine 
the effect of air pollution co-benefits on the optimal physical distancing policy and conduct 
sensitivity analyses to gauge the influence of several key parameters and uncertain model 
assumptions. Using recent estimates of the association between airborne particulate matter 
and the virulence of COVID-19, we find that accounting for air pollution co-benefits can 
significantly increase the intensity and duration of the optimal physical distancing policy. 
To conclude, we broaden our discussion to consider the possibility of durable changes in 
peoples’ behavior that could alter local markets, the global economy, and our relationship 
to nature for years to come.

Keywords COVID-19 · Air pollution · Co-benefits · Physical distancing · Social 
distancing · Optimal control

1 Introduction

In the initial months of the COVID-19 pandemic, most nations have attempted to con-
trol the spread of infections by reducing the rate of contacts between people who carry 
the virus and those who have not yet been exposed. The various methods to achieve such 
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reductions in contacts are referred to generically as “physical distancing” measures—also 
known as “social distancing” or “spatial distancing” (Abel and McQueen 2020). While 
physical distancing can reduce the death toll of the pandemic, it also can impose large costs 
on society as exemplified by the sharp declines in GDP and employment in the months 
following the initiation of physical distancing measures in the United States (Sachs 2020; 
U.S. Department of Labor 2020). This suggests there could be substantial gains from prop-
erly calibrating the intensity and the timing of physical distancing restrictions.

In this study, we characterize the time path of physical distancing that minimizes 
total economic damages from controlling the COVID-19 epidemic in the United States, 
accounting for a potentially important category of environmental co-benefits. We develop 
an integrated epidemiological-economic model that includes a standard model of disease 
transmission, the monetized value of COVID-19 deaths averted and lives saved from expo-
sure to air pollution, and the short- and long-run costs of physical distancing. The model 
includes the main features of the disease spread process and the economic trade-offs asso-
ciated with broad-based physical distancing measures that represent the main approach to 
controlling the spread before a vaccine or effective treatments are available.

We expand the model used in on our earlier benefit-cost analysis of physical distancing 
in several ways (Thunström et al. 2020). First, we explicitly connect the intensity and tim-
ing of physical distancing to both lives saved from the infection and the income lost from 
reduced work hours and lowered productivity. Second, we incorporate the co-benefits of 
reduced mortality risks from declines in air pollution during the period of physical distanc-
ing. This extension is motivated by a striking side-effect of physical distancing, as indi-
cated by visibly reduced levels of ambient air pollution in many areas around the world 
(IEA 2020; Venter et al. 2020). Globally, outdoor air pollution is responsible for around 
4.2 million premature deaths per year (World Health Organization 2020a), and recent 
estimates for the U.S. range from around 50,000 to 250,000 premature deaths per year 
attributable mainly to PM2.5 (Burnett et al. 2018; Bowe et al. 2019; Goodkind et al. 2019). 
Adding an air pollution component to our model allows us to account for the lives saved 
from reductions in pollution emissions as a co-benefit from physical distancing measures 
whose primary purpose is to control the spread of infections. Third, we include a puta-
tive link between air pollution and the virulence of COVID-19. Several recent studies have 
attempted to identify an interaction effect between air pollution and COVID-19 transmis-
sibility or case fatality ratios (Wu et al. 2020; Ogen 2020; Persico and Johnson 2020). Ini-
tial results of these studies suggest that airborne particulate matter could have a significant 
positive mediating influence on COVID-19 fatalities, so we use our model to explore the 
potential effect of this link on the optimal physical distancing policy.

Our study draws on a mature literature that integrates economics and epidemiology to 
examine a wide variety of infectious diseases in humans (e.g. Gersovitz and Hammer 2004; 
Rowthorn et al. 2009; Perrings et al. 2014; Fenichel et al. 2011; Gersovitz 2011; Fenichel 
2013; Philipson 2016). We also add to a growing collection of recent studies that apply 
optimal control theory or computational dynamic optimization techniques to the COVID-
19 outbreak in particular (e.g. Acemoglu et al. 2020; Alvarez et al. 2020; Eichenbaum et al. 
2020; Farboodi et  al. 2020; Gonzalez-Eiras and Niepelt 2020; Kruse and Strack 2020; 
Piguillem and Shi 2020; Toxvaerd 2020). A comprehensive review of these studies would 
take us too far afield, so here we briefly describe several closely related studies to highlight 
points of comparison between our work and that of others in the literature.

Farboodi et al. (2020) develop a continuous-time optimal control model with a vac-
cine backstop and endogenous physical distancing by optimizing individuals. They 
show that without regulation, individuals choose a sub-optimal level of physical 
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distancing, reducing economic activity too late to achieve the socially optimal level of 
disease suppression. The optimal policy is characterized by an initial rapid ramp-up and 
a long duration of an intermediate level of physical distancing until a vaccine is devel-
oped. The authors apply a calibrated version of the model to the COVID-19 epidemic 
in the United States, which shows that the optimal policy delays the peak of infections 
to buy time for a vaccine. Eichenbaum et al. (2020) examine macroeconomic impacts of 
pandemics by modeling the behavioral responses of individuals to the evolving trade-
off between consumption and health risks during an infectious disease outbreak. They 
assume that the risk of infection increases with consumption, which leads to a decline 
in both market demand and supply during a pandemic, resulting in an economic reces-
sion. Alvarez et al. (2020) and Kruse and Strack (2020) also study the optimal timing 
of physical distancing, accounting for both deaths due to infection and the economic 
costs of physical distancing, assuming that a vaccine or fully effective treatment will be 
developed within one year. In both cases, the optimal policy response allows infections 
to rise until they are close to the medical system capacity, and then physical distancing 
measures are rapidly implemented to keep the number of infections below the medical 
system’s capacity constraint for a period of time that dampens or eliminates a second 
wave of infections. Acemoglu et al. (2020) include multiple risk groups in a pandemic 
control model, where the groups are characterized by differing interaction behaviors and 
by age, which affects their fatality risk if infected. The authors use the model to examine 
the effects of targeted lockdowns, and find that differentiated lockdown policies will 
outperform those that are uniformly applied to the whole population. Gonzalez-Eiras 
and Niepelt (2020) consider the implications of non-optimally timed physical distanc-
ing programs, and find that the net benefits of the policy can be drastially reduced if 
controls are initiated too early or kept in place too long. Toxvaerd (2020) characterizes 
the equilibrium (unregulated) behavior of individuals in a model of infectious disease 
spread with no risk of death but with reduced flow utility in the infected state and with 
a linear cost of physical distancing. The equilibrium path of physical distancing has the 
effect of flattening the curve of infections at a characteristic level of infections deter-
mined by a combination of epidemiological and economic parameters.

Our model differs in the details but shares many of the same basic features as those 
reviewed above, including a traditional epidemiological model of disease spread and 
a representation of the influence of physical distancing on deaths from the infection 
and economic output or income. Our main modeling innovation is to incorporate a link 
between physical distancing and air pollution, as well as the interaction between pollu-
tion and the COVID-19 fatality rate. To our knowledge, our study is the first to examine 
this link in an optimal control framework, which allows us to assess a potentially impor-
tant category of co-benefits from physical distancing.

A final note before proceeding to the details of the model. We view our approach, 
like the studies described above, as closer to the “streamlined” than the “elaborated” 
end of the spectrum of possible models. We include the main features of the system 
relevant to our primary research questions, but otherwise we intentionally simplify as 
much as possible. We agree with Pindyck (2020) that calibrated SIR models applied to 
the COVID-19 outbreak should be viewed as only rough approximations to reality and 
taken with a grain of salt. At the same time, even if they cannot provide precise fore-
casts and definitive policy prescription, we believe that strategically simplified models 
roughly calibrated to the stylized facts can be useful for developing qualitative insights 
and for generating preliminary comparisons of alternative control scenarios.
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2  Methods

To project the number of infections and deaths under various physical distancing policies, 
we use a discrete-time SIR compartment model (Kermack and McKendrick 1927; Heth-
cote 1989). We modify the standard model to represent the influence of physical distancing 
on the contact rate and the endogeneity of the case fatality ratio as the health care system 
becomes overwhelmed by a surge of infected individuals seeking medical care. We include 
a link between physical distancing and mortality from air pollution, as well as an interac-
tion between air pollution concentrations and the COVID-19 case fatality ratio. The short- 
and long-run economic costs of physical distancing depend on the average distancing frac-
tion prior to the arrival of a vaccine and the assumed speed of economic recovery.

2.1  Disease Dynamics

The equations of motion for susceptible, infected, and recovered individuals are

and

In Eq. (1), � is the contact rate without physical distancing, and xt is the fractional reduc-
tion in the number of potential transmission encounters that all individuals—both suscep-
tible and infected—have in period t (Alvarez et al. 2020). We refer to xt as the “distanc-
ing fraction,” which will serve as the control variable in the regulator’s optimal control 
problem.

In Eq. (2), � is the rate of recovery from infection (the reciprocal of the average dura-
tion that individuals remain infected and able to spread the virus), and Dt is the number 
of deaths due to infection in period t. Denoting the case fatality ratio by �t , the number of 
infected individuals who die in period t is

Note that �t is the probability of dying from the infection before recovering, not the per 
period probability of death for infected individuals (Keeling and Rohani 2011, p 34). 
We model the case fatality ratio as endogenous to the system, and indirectly responsive 
to the physical distancing policy through its influence on the evolution of infections. As 
the number of infected individuals requiring medical care increases, the health care sys-
tem becomes stressed. This leads to infected individuals receiving a lower standard of care 
as scarce medical resources are spread ever more thinly. We represent this feedback by a 
logistic function of infections,

(1)St+1 =St −
(

1−xt
)2
�StIt,

(2)It+1 =It +
(

1−xt
)2
�StIt − �It − Dt,

(3)Rt+1 = Rt + �It.

(4)Dt = �
�t

1 − �t
It.

(5)𝜌t = 𝜌lo +
𝜌hi − 𝜌lo

1 + e−k(It−Ĩ)
,
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where �lo is the lower-bound case fatality ratio, which will obtain when It is much lower 
than a critical value of infections, Ĩ (corresponding to the inflection point of the logistic 
function), and �hi is the upper-bound case fatality ratio, which will obtain when It is much 
higher than Ĩ . The parameter k controls the steepness of the logistic function, so for high 
k the relationship approaches a step function with �lo for all It < Ĩ and �hi for all It > Ĩ , as 
assumed in Thunström et al. (2020). We assume that recovery from infection yields immu-
nity to the virus, although this has not been firmly established for COVID-19. While a 
number of studies find that people develop antibodies from the infection, the extent of pro-
tection from subsequent infections is still uncertain (World Health Organization 2020b).

Equations (1)–(5) comprise the modified SIR model with physical distancing and 
endogenous case fatality ratio. We use this model to project the number of infections and 
deaths under various physical distancing policies represented by the time path of the dis-
tancing fractions, xt . The regulator’s task is to find and enforce the sequence of xt ’s that 
minimizes the total damage from the outbreak, which includes the value of lives lost due 
to infection, minus the value of lives saved due to reduced pollution, plus the value of cur-
rent and future income lost due to the reduced economic activity associated with physical 
distancing.

2.2  Lives Saved from Reduced Air Pollution

We account for the value of lives saved from air pollution in the period of physical distanc-
ing due to lower emissions from reduced economic activity. To do so, we use a propor-
tional hazard model (Cox 1972; Harrell 2015), which implies that the number of deaths 
averted in a time period due to a reduction in pollution concentration from Z0 to Z1 is

where M0 is the initial deaths from all causes in the time period, Z0 is the initial level of air 
pollution, Z1 is a lower level of pollution due to reduced economic activity caused by physi-
cal distancing, and � is the air pollution hazard coefficient.

To compress notation in what follows, we define the fractional reduction in the average 
pollution concentration during the period of physical distancing as zX , so Z0 − Z1 = zXZ0 . 
Air pollution emissions increase with overall economic activity, with an especially strong 
link to activity in the transportation sector. To represent this linkage, we assume that air 
pollution emissions on day t are a possibly non-linear function of the physical distancing 
fraction, xt . Specifically, the fractional reduction in the average pollution concentration 
during the period of physical distancing is

where days are indexed by t, and T is the duration of the physical distancing policy in 
days. The exponent � controls the shape of the response of pollution to physical distancing. 
� = 1 is the linear case, for which zX =

1

T

∑T

t=1
xt , while 𝜔 < 1 ( > 1 ) implies a sub-linear 

(supra-linear) response of emissions to distancing, in which case the fractional reduction in 
pollution with physical distancing would be less than (greater than) the distancing fraction. 
To understand how a non-linear response could arise, suppose that the average individual’s 
inter-personal contacts are evenly split between contacts with co-workers at the workplace 
and contacts with friends and neighbors close to home. Also suppose that commuting to 
and from work accounts for more (less) than half of the average individual’s vehicle miles 

(6)Lives saved = M0

[

1 − e−�(Z0−Z1)
]

,

(7)zX = 1 −
1

T

∑T

t=1
(1 − xt)

�,



710 S. C. Newbold et al.

1 3

travelled and associated pollution emissions. If early increments of physical distancing 
mainly involve work-from-home policies, then, under the prior suppositions, the average 
person’s inter-personal contacts would be reduced by half while her pollution emissions 
would be reduced by more (less) than half, which implies 𝜔 > (<) 1. Here we use � = 1 , 
which we view as natural default assumption.

Several recent studies have examined possible links between air pollution and COVID-
19 related deaths. Long-term exposure to air pollution contributes to many of the underly-
ing health conditions that put people at higher risk for severe consequences from COVID-
19, particularly respiratory diseases. Such respiratory conditions also might be exacerbated 
by contemporaneous air pollution concentrations, which could compromise the body’s abil-
ity to mount an effetive immune response to COVID-19. Focusing on the U.S., Wu et al. 
(2020) find that a 1 �g ⋅m−3 higher long-term average concentration of PM2.5 (between 
the years 2000–2016) is associated with an 8% increase in the COVID-19 fatality risk. 
Other researchers have examined the possibility that airborne particulate matter (PM) facil-
itates the transmission of SARS-CoV-2 through the air (Martelletti and Martelletti 2020; di 
Toppi et al. 2020; Setti et al. 2020), which could increase force-of-infection for repiratory 
disease transmission (Tang et al. 2018). Persico and Johnson (2020) used the suspension 
of U.S. Environmental Protection Agency enforcement activities as a natural experiment 
to estimate the impact of short-run decreases in pollution on COVID-19 fatalities at the 
county level, and find large effects. To examine the potential importance of such a link for 
the optimal physical distancing policy, we include an interaction between air pollution and 
the COVID-19 case fatality ratio, which appears in Eq. (4) above. This allows us to com-
pare the overall deaths from infection and lives saved from air pollution between otherwise 
equivalent model runs with and without the interaction included. When the interaction is 
included, the case fatality ratio in each period is adjusted by a factor that depends on the 
overall reduction in air pollution due to physical distancing, i.e.,

where � is the air pollution-infection interaction coefficient.

2.3  Valuing Lives

To value lives saved from infection or air pollution, we use a central estimate of the “value 
per statistical life” (VSL). This quantity represents the average marginal willingness to pay 
for reducing the probability of death in a time period, i.e., the marginal rate of substitution 
between money and mortality risk (Viscusi 2018).1 Here we use a constant VSL, though 
some authors use age-adjusted VSL values, typically declining for older individuals (e.g. 
Greenstone and Nigam 2020), and others value the expected loss of life-years rather than 
expected deaths (e.g. Hall et al. 2020). Pindyck (2020) also suggests that a lower average 
VSL value should be used when the number of deaths averted is large, due to diminishing 
marginal willingness to pay for risk reductions. The influence of age on the VSL has been 
examined in a number of previous studies (e.g. Shepard and Zeckhauser 1984; Kniesner 
and Viscusi 2006; Evans and Smith 2006; Hammitt 2007), but no clear consensus on a 

(8)��
t
= �te

−�zXZ0 ,

1 See Cameron (2010) for an extended discussion of the often-misunderstood term “value per statistial 
life,” and see Simon et al. (2019) for an examination of alternative labels designed to be less prone to lead 
to confusion for non-economists.
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singular strategy to adjust for age has yet emerged in the literature. In the meantime, we 
follow U.S. federal agency recommendations and use a fixed central value of the VSL for 
all ages in our benchmark runs (U.S. Office of Management and Budget 2003; National 
Research Council 2008; U.S. Environmental Protection Agency 2014; U.S. Department of 
Transportation 2016).

2.4  Cost of Physical Distancing

The relationship between the extent of physical distancing and lost income in society is 
typically taken to be linear (e.g. Alvarez et  al. 2020; Toxvaerd 2020; Kruse and Strack 
2020; Piguillem and Shi 2020; Bolzoni et al. 2019; Hansen and Day 2011; Lee et al. 2010). 
Yet the possibility exists that the amount of income lost may be lower or higher than the 
physical distancing fraction. We introduce flexibility into the physical distancing cost func-
tion by allowing for non-constant returns to the rate of interpersonal contacts; specifically, 
we assume that per capita income on day t is a possibly nonlinear function of contacts, i.e., 
yt ∝ (1 − xt)

� , where � = 1 is the linear case and 𝜃 < 1 ( > 1 ) implies decreasing (increas-
ing) returns, in which case the fraction of income lost with physical distancing would be 
less than (greater than) the distancing fraction. If mixing can be reduced initially by some 
people working remotely, traveling less, minimizing face-to-face meetings, etc., without 
being furloughed or losing their jobs, then � would be less than 1. Considering that some 
fraction of the workforce can reduce mixing with relatively little loss of productivity, we 
view �=1 as a conservative benchmark assumption.

We account for both the short-run and long-run cost of physical distancing. The short-
run cost is the present value of lost income during the period of physical distancing,

where y is aggregate income per day with no physical distancing, and r′ is the daily dis-
count rate. The long-run cost of physical distancing is the present value of lost income after 
the period of physical distancing, which will depend on the speed of economic recovery 
after the initial decline in aggregate income. To represent the long-run cost, we assume 
that income growth will be temporarily elevated as the economy recovers from the shock, 
and the post-outbreak growth path will asymptotically approach the counterfactual no-out-
break growth path at a constant rate � . Based on these assumptions, and discounting future 
income at a constant rate r, the present value of lost income after the period of physical 
distancing is

where yX = 1 −
1

T

∑T

t=1
(1 − xt)

� is the fractional loss of aggregate income during the 
period of physical distancing, Y0 is aggregate annual income before the outbreak, and r is 
the annual discount rate.

Combining the relevant elements specified above, the total damage function is

(9)v =
∑T

t=1
y
[

1 − (1 − xt)
�
]

e−r
�t,

(10)V = yXY0
e−r

�T

r + �
,

(11)TD = VSL ×

[

∑T

t=0
Dt −M0

(

1 − e−�zXZ0
)

]

+ v + V .
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Equation (11) combines the value of COVID-19 deaths, the value of averted air pollution 
deaths, and the value of lost income in the short-run and the long-run. Note that the con-
trol variables, xt , are implicit in Eq. (11), through the definitions of zX , yX , v, and V, and 
through the dependence of the Dt ’s on the xt ’s as determined by Eqs. (1)–(5).

2.5  Model Calibration and Solution

Following Thunström et  al. (2020), we use R0 = 2.4 (Liu et  al. 2020; Ferguson et  al. 
2020; Aronson et al. 2020), � = 1/6.5 (Liu et al. 2020; Lauer et al. 2020), �lo = 0.005 , and 
�hi = 0.015 (Riou et al. 2020; Wilson 2020; Yang et al. 2020; Dorigatti et al. 2020; Unwin 
et al. 2020).2 In a sensitivity analysis, we use R0 = 4.8 , which is closer to the more recent 
estimate reported by Sanche et al. (2020).

To specify the inflection point of the case fatality ratio function, Ĩ , we assume that if 
5 × 105 hospital beds are occupied by COVID-19 patients—roughly half of the 9.24 × 105 
staffed beds in U.S. hospitals (American Hospital Association 2020)—then the case 
fatality rate would be at the mid-point of its possible range between �lo and �hi . Wu and 
McGoogan (2020) reported that 5% of COVID-19 cases in China were “critical,” so we 
assume that 5% of COVID-19 infections will require the use of a hospital bed. This gives 
Ĩ = 106 × 0.5 ÷ 0.05 = 107 infected individuals. That is, if on any given day 10 million 
people are infected by the virus, then a fraction (�lo + �hi)∕2 would not be expected to sur-
vive. We set the steepness parameter, k, to give a pronounced S-shape but not a severe step 
function.

To calibrate the air pollution hazard coefficient, � , we rearrange the proportional hazard 
function in Eq. (6) to get �=−Z−1

0
ln
(

1 − m0∕M0

)

 , where m0 is the baseline (pre-outbreak) 
number of deaths per year attributable to air pollution, and M0 is the baseline number of 
deaths per year from all causes. Burnett et al. (2018) reported a population-weighted aver-
age PM2.5 concentration in the U.S. of 7.9�g ⋅m−3 . Goodkind et al. (2019) estimated that 
107,000 premature deaths in the U.S. are attributable to PM2.5 . Xu et al. (2018) reported 
an age-adjusted death rate of 723.6 in 100,000 in the U.S. in 2018. The U.S. population 
size was 3.27×108 in 2018. Combining these figures in the calibration equation gives 
� = 5.85×10−3.

In our benchmark model we do not include an interaction between air pollution and 
the COVID-19 case fatality ratio, so we set � = 0 . A causal link between these variables 
could have a profound impact on the optimal physical distancing policy, so we examine 
the implications of such a link in model variations using two preliminary estimates of this 
association. First, Persico and Johnson (2020) find that a short-run increase in PM2.5 of 1 
�g ⋅m−3 is associated with a doubling of the COVID-19 case fatality ratio, so in a “strong 
link” model variation we set � = ln (2) . Second, Wu et al. (2020) find that differences in 
long-run average PM2.5 concentrations among U.S. counties of 1 �g ⋅m−3 is associated 
with an 8 percent increase in the COVID-19 case fatality ratio, so in a “weak link” model 
variation we set � = ln (1.08).

To quantify the benefits of lives saved, we use a benchmark VSL value of $10 million. 
This is a central estimate from hedonic wage studies of the value per statistical life (Viscusi 
2018; Kniesner and Viscusi 2019), and is consistent with U.S. federal agency benefit-cost 

2 Estimates of the case fatality ratio across states in the U.S. by the Imperial College COVID-19 Response 
Team range from roughly 0.005 to 0.013 (Unwin et al. 2020, Fig. 17).
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guidelines (U.S. Environmental Protection Agency 2014; U.S. Department of Transporta-
tion 2016). In a sensitivity analysis we use a lower value of $4.5 million, which is consist-
ent with the average age-varying VSL used by Greenstone and Nigam (2020) to monetize 
the impact of physical distancing in the U.S.

To specify � , which controls the long-run costs of physical distancing, we make an 
assumption about the time required for aggregate income to recover to its counterfactual 
no-outbreak path. Specifically, we define the recovery time, tR , as the time required for 
the gap between the actual GDP path and the no-outbreak path to shrink by 95%, i.e., 
e−�tR = 0.05 , so � = −t−1

R
ln (0.05) . We assume tR = 10 years, double the average recovery 

time among all bear markets since 1835 (Sachs 2020), which gives � = 0.3 yr−1.
Finally, to compute the present value of future income losses, we use a U.S. federal 

agency recommended discount rate of r = 0.03 yr−1 (U.S. Office of Management and 
Budget 2003; U.S. Environmental Protection Agency 2014). Table  1 lists all model param-
eters and their benchmark and sensitivity case values.

To solve the model, we use a numerical policy iteration approach (Bertsekas 2015). 
First, we initialize the distancing fraction to zero for the entire time horizon, x0

t
= 0 ∀t . 

Then we compute the gradient of the objective function ( gi
t
= �TD∕�xi

t
 ∀t ), update the pol-

icy function ( xi+1
t

← xi
t
+ Δ × gi

t
 ∀t , where Δ is a suitably small step size), and repeat for 

i = 1, 2, 3, ..., imax iterations. For consistency and reproducibility we use imax = 103 , which 
appears to be sufficient to achieve convergence for all cases examined in this paper.

3  Results

We use the model to characterize the optimal timing and intensity of physical distancing 
to control the COVID-19 outbreak in the U.S., and to examine the influence of air pol-
lution co-benefits on the optimal physical distancing policy. Considering the uncertainty 
surrounding many aspects of the system, our benchmark parameters described above and 

Table 1  Model parameter descriptions and values

Entries with multiple values correspond to case variations shown in Figs. 1, 2, and  3 and Table  2. All other 
parameters are held at their benchmark values shown here

Parameter Description Value(s)

R0 Basic reproductive rate 2.4 , 4.8
� Rate of recovery from infection [ day−1] 1/6.5
�
lo

Case fatality ratio, lower bound 0.005
�
hi

Case fatality ratio, upper bound 0.015
Ĩ Heath care system critical capacity 107 , 1.5⋅107

Z0 Air pollution concentration [ �g ⋅m−3 PM2.5] 7.9
� Curvature of distancing pollution function 1
� Air pollution hazard coefficient 5.85⋅10−3

� Air pollution-infection interaction 0 , 0.0770 , 0.693
� Curvature of distancing cost function 1 , 0.5
� Economic recovery rate [ year−1] 0.300
r Discount rate [ year−1] 0.03
VSL Value per statistical life [US$] 10⋅106 , 4.5⋅106
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shown in Table  1 are meant to serve mainly as a point of comparison for alternative cases. 
To maintain continuity with previous work, our benchmark parameters are largely consist-
ent with Thunström et al. (2020), aside from the new model features.

Three key parameters that drive the model results are the basic reproduction number, 
R0 , the value per statistical life, VSL, and the curvature of the physical distancing cost func-
tion, � . Results for our benchmark case and two additional cases involving variations in one 
or two of these key parameters are presented in Figs.  1, 2, 3 and Table  2.

The graphs in Fig.  1 show results for our benchmark case, which uses our preferred 
central parameter values and most closely resembles our prior analysis (Thunström et al. 
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2020). In Fig.  1, panel (a) shows the daily progression of the optimal physical distanc-
ing policy, and panel (b) shows the associated S−I phase diagram for the uncontrolled 
and optimally controlled scenarios, for each of four air pollution variations with all other 
parameters set at their benchmark values.3 The highest dashed curve in the phase diagram 
depicts the uncontrolled outbreak. The far right end of the curve corresponds to the start 
of the outbreak ( S0, I0 ). Moving from right to left, the curve traces out the S−I pairs as the 
outbreak proceeds: It increases to a maximum around 70 million individuals then declines 
back to zero, while St declines monotonically as individuals are irreversibly removed 
from the susceptible compartment. At the end of the outbreak, St has declined to around 

Table 2  Parameter values and 
outcomes for three cases and four 
treatments of air pollution in the 
model: no air pollution effects, 
air pollution with no link to 
COVID-19 fatality, air pollution 
with a weak link to COVID-19 
fatality, and air pollution with a 
strong link to COVID-19 fatality

1 2 3

Parameters
R0 2.4 2.4 4.8
VSL [ 106 $] 10 10 4.5
� 1 0.5 1
Outcomes
COVID-19 deaths, uncontrolled [ 106] 4.12 4.12 4.75
No air pollution
COVID-19 deaths averted [ 106] 2.47 2.65 1.17
Immediate GDP decline 0.0595 0.0449 0.0290
Net benefits [ 1012 $] 19.0 22.1 3.76
Air pollution no link
COVID-19 deaths averted [ 106] 2.47 2.65 1.17
Pollution deaths averted [ 103] 6.54 9.41 3.20
Immediate GDP decline 0.0598 0.0457 0.0292
Net benefits [ 1012 $] 19.0 22.2 2.45
Air pollution weak link
COVID-19 deaths averted [ 106] 2.55 2.79 1.31
Pollution deaths averted [ 103] 6.76 10.6 3.56
COVID-19×pollution deaths averted [ 103] 60.0 81.0 68.6
Immediate GDP decline 0.0619 0.0514 0.0325
Net benefits [ 1012 $] 19.6 23.0 2.75
Air pollution strong link
COVID-19 deaths averted [ 106] 3.11 3.57 2.60
Pollution deaths averted [ 103] 8.29 15.7 6.80
COVID-19×pollution deaths averted [ 103] 519 662 872
Immediate GDP decline 0.0759 0.0760 0.0622
Net benefits [ 1012 $] 23.9 28.5 5.70

3 We attempt to use the following nomenclature consistently in our presentation of results: “cases” refers to 
different sets of the three key parameters ( R

0
 , VSL, � ) that distinguish our sensitivity analyses, “scenarios” 

refers to different social distancing policies within each case (in particular, the uncontrolled scenario where 
x
t
= 0 ∀t and the optimal control scenario), and “variations” refers to different treatments of the air pollu-

tion co-benefits of physical distancing within each scenario.
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40 million, which is the number of people who would avoid infection in this uncontrolled 
scenario.

In all four air pollution variations, the optimal policies shown in panel (a) are initi-
ated with an abrupt increase in the distancing fraction just in time to arrest the early rapid 
spread of the pathogen and prevent the number of infections from exceeding the critical 
threshold of the health care system. As It approaches the threshold, it is optimal to nearly 
instantaneously increase the physical distancing fraction from 0 to around 0.35, which in 
our benchmark case is initiated on day 37. Ignoring air pollution altogether (solid line), 
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after the immediate rapid increase the physical distancing fraction is then reduced nearly 
linearly until around day 210. The policy then increases again, modestly and temporar-
ily, before finally decreasing to zero by day 289. At the other extreme, when air pollution 
co-benefits and a strong link between pollution and COVID-19 deaths are included (dot-
dashed line), the policy begins with nearly identical timing and intensity but is maintained 
at a higher intensity for a longer duration, decreasing to zero by day 380. Qualitatively, the 
optimal policies in all four air pollution co-benefit variations involve an early rapid increase 
in the distancing fraction, then a gradual decline over the course of nearly a full year. The 
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influence of air pollution co-benefits on the shape of the optimal policy is negligible if no 
link between pollution and COVID-19 is included, but is prominent if the link is strong.

The horizontal line in panel (b) corresponds to Ĩ , the inflection point of the case fatal-
ity ratio function, and the vertical line corresponds to N(1 − 1∕R0) , the herd immunity 
threshold for susceptible individuals. The phase diagram in Fig. 1 shows that all four con-
trols lead to similar S−I curves, each turning down shortly before the critical threshold 
is reached and extending to just beyond the herd immunity level, which serves to prevent 
a second wave of infections after physical distancing restrictions are lifted. The rapid 
increase in the distancing fraction for all variations shown in panel (a) flattens the curve of 
infections, as shown in panel (b). The general pattern is similar to those found in other opti-
mal control studies, including Alvarez et al. (2020) and Kruse and Strack (2020).

Key outcomes for the benchmark case are provided in the first column of Table  2. 
Using our benchmark parameters, the uncontrolled outbreak results in just over 4 million 
COVID-19 deaths. This is a result of nearly 300 million cases of infection and the elevated 
case fatality ratio due to the critical threshold of the health care system being exceeded for 
a large portion of the duration of the uncontrolled outbreak. The controlled scenarios all 
save nearly 2.5 million lives or more relative to a no-distancing scenario, depending on 
the influence of air pollution in each variation. When air pollution co-benefits are excluded 
altogether, 2.47 million COVID-19 deaths are averted by physical distancing, which also 
leads to an initial decline in GDP of nearly 5.95 percent.

When air pollution co-benefits are included but with no link between air pollution and 
COVID-19 deaths, the control policy becomes slightly more stringent, as indicated by the 
slightly larger immediate decline in GDP of 5.98 percent. In addition to the 2.47 million 
COVID-19 deaths averted, 6,540 air pollution deaths due are averted due to the temporar-
ily reduced levels of PM2.5 during the period of physical distancing. This is roughly 6 per-
cent of the baseline air pollution deaths (107,000), so the lives saved from air pollution are 
roughly proportional to the immediate decline in GDP.

In the third variation, which includes a weak link between air pollution and COVID-19 
deaths ( � = 0.077 , based on Wu et al. 2020), the control policy is now discernably altered 
from the “no air pollution” variation. With a weak link, 2.55 million COVID-19 deaths are 
averted, which includes an additional 60,000 averted deaths due to the interaction between 
air pollution and the COVID-19 fatality risk. This is nearly ten times larger than the 6,760 
deaths averted due to the direct effects of air pollution on mortality.

The final variation includes a strong link between air pollution and COVID-19 deaths 
( � = 0.693 , based on Persico and Johnson 2020). In this case more than 3 million COVID-
19 deaths are averted, including more than 0.5 million due to the interaction with air pol-
lution, and 8,290 deaths are averted due to the direct effects of air pollution.4 The stronger 
interaction between air pollution and COVID-19 deaths in this variation leads to a control 
policy that is sustained at a higher stringency and for a longer duration, which in turn leads 
to a larger immediate decline in GDP of 7.59 percent.

In all four air pollution variations the optimal control policy concludes well before the 
time horizon of the model, which is 2 years (730 days). This suggests that if a vaccine will 
not be available before that time, then the vaccine would not affect the optimal physical 
distancing policy. The vaccine still would be useful in reducing the risk of future infections 

4 As a point of comparison, Cicala et al. (2020) estimate that during the early phase of the COVID-19 out-
break in the U.S., about 360 of 1,500 expected deaths per month from PM

2.5
 exposure were averted due to 

emission reductions from physical distancing.
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from imported cases, but it would not be necessary to eliminate the risk of a future out-
break due to community spread because the number of susceptible individuals would have 
already been decreased below the herd immunity threshold. Childhood vaccinations also 
might be warranted after this time to prevent the number of susceptible individuals from 
climbing back above the herd immunity threshold over time as immune individuals die and 
new cohorts enter the population without immunity. And if infection does not confer life-
long immunity, then the role of a vaccine increases further still.

Results for the second case are shown in Fig. 2 and the second column of Table  2. In 
this case, all parameters are held at their benchmark values except the curvature of the 
physical distancing cost function, which is here set to � = 0.5 . This implies a concave rela-
tionship between interpersonal contacts and income, which means that the first increments 
of physical distancing, which involves a reduction in the rate of interpersonal contacts, are 
less costly than later increments. In this case the proportional decline in income is less 
than the physical distancing fraction. The effect of this assumption is to make physical 
distancing less costly overall, which leads to an optimal policy that is more stringent and of 
longer duration than our benchmark case, as shown in panel (a) of Fig. 2. Here the control 
policies start around day 31 and conclude between days 437 and 692. With a less costly 
physical distancing technology, the influence of including air pollution co-benefits is more 
pronounced. Even the variation with no interaction between pollution and COVID-19 fatal-
ities is discernible in panel (a), and the variations with a weak and strong link extend the 
duration of the policy roughly 2 months and 7 months, respectively. The quantitative dif-
ferences in outcomes can be seen in Table  2. When air pollution co-benefits are excluded 
entirely, more COVID-19 deaths are averted (2.65 million) at a lower immediate decline in 
GDP (4.49 percent) relative to our benchmark case in column 1. Accounting for air pollu-
tion co-benefits reveals that an additional 9,410 deaths are averted due to reduced air pollu-
tion exposure, but otherwise the outcomes are nearly identical to the no air pollution varia-
tion. Assuming a weak link between air pollution and COVID-19 deaths, the policy adjusts 
to avert 2.79 million COVID-19 deaths, which includes 81,000 deaths averted due to the 
interaction with air pollution. Assuming a strong link with air pollution leads to a dramatic 
increase in the duration of the policy and the number of deaths averted for about the same 
cost as in the benchmark case, as reflected in the nearly equivalent immediate GDP decline 
of 7.6 percent. In addition, given the increased stringency and duration of the program, the 
relative influence of air pollution co-benefits is magnified. Panel (a) in Fig. 2 demonstrates 
the significant difference in optimal physical distancing with and without air pollution co-
benefits, and the cumulative numbers of pollution deaths averted increases significantly. 
While total costs in this case increase, the increased numbers of deaths avoided more than 
compensates and therefore extends the duration of physical distancing measures. By com-
parison to our benchmark case, these results suggest that large gains in efficiency could be 
achieved if the cost heterogeneity of component physical distancing measures is high, and 
if we are able to deploy the component measures in decreasing order of their cost-effective-
ness (Newell and Stavins 2003).

Results for the third and final case we examine in this paper are shown in Fig. 3 and the 
third column of Table 2. In this case we vary two parameters: R0 is increased to 4.8 [closer 
to the estimate reported by Sanche et  al. (2020)], and VSL is decreased to $4.5 million 
[to match the average value used by Greenstone and Nigam (2020)]. The optimal control 
policies and associated outcomes are qualitatively different in this case. Relative to our first 
two cases, here the optimal policy rapidly increases to a much higher level of stringency—
between 0.7 and 0.8—but is sustained for a much shorter duration—between about 90 and 
180 days. As a result, the curve of infections is not immediately flattened as in cases 1 and 
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2. In this case, it is optimal to let infections exceed the medical system threshold before 
initiating physical distancing. Infections are allowed to grow past 100 million in the vari-
ation with no air pollution co-benefits, and past 60 million in the variation with a strong 
link between infection fatality risk and air pollution. When physical distancing restrictions 
are initiated, the high stringency of the measures quickly reduces the number of infec-
tions back below the medical system threshold. Thereafter, physical distancing measures 
are gradually released until herd immunity is achieved. When air pollution co-benefits are 
included and a strong link between pollution and COVID-19 deaths is assumed, the peak of 
infections under the optimal control policy is just over one third of the uncontrolled peak. 
Here again we see that a strong link between pollution and COVID-19 deaths has a large 
influence on the shape of the optimal control policy, but even in this variation the curve of 
infections is not completely flattened below the critical threshold of the health care system. 
The optimal policy fails to flatten the curve in this case for two reasons. The obvious reason 
is that with a lower VSL the demand for saving lives is lowered. Assigning a lower value 
to mortality risks reduces the implied damage to society from the outbreak and results in 
reduced net benefits of the control policy. The less obvious reason is that with a higher R0 , 
physical distancing is less effective at stemming the spread of the virus: reducing R0 from a 
very high level to a high level prevents fewer infections than reducing R0 from a high level 
to a medium level (Thunström et al. 2020). These two effects combine to yield an optimal 
policy that allows a much larger number of deaths than cases 1 and 2. (In other cases not 
reported here, we found that the infection curve is flattened with R0=4.8 and VSL = $10 
million, and is nearly flattened with VSL = $4.5 million and R0 = 2.4.)

4  Discussion

Physical distancing has so far been the most widely used policy to control the spread of 
SARS-CoV-2. While the benefits to physical distancing are large, given the substantial 
number of lives saved, such measures also impose significant private and social costs. In 
this study we characterized the intensity and timing of physical distancing that minimizes 
total economic damages from controlling COVID-19, and we examined the co-benefits of 
lives saved from air pollution and a potential link between air pollution and COVID-19 
fatalities.

Our model jointly considers physical distancing that results from policies (mandates or 
recommendations) and individual decisions to self-protect, independent of policies. Ben-
efits from physical distancing are recorded as lives saved, while costs are measured as the 
loss of income in both the short run (during the period of physical distancing) and the long 
run (as the economy recovers from the initial shock). On the benefit side, lives saved result 
both from averted COVID-19 deaths and averted air pollution deaths. In our integrated epi-
demiological-economic model of COVID-19 in the U.S., deploying a physical distancing 
policy with optimal timing and intensity saves millions of lives and generates significant 
net benefits in comparison to an uncontrolled scenario with no physical distancing. We also 
find that thousands more deaths are averted due to the reduction of air pollution emissions 
from physical distancing, and hundreds of thousands more COVID-19 deaths are averted 
if we assume a strong causal link between air pollution concentrations and the COVID-19 
fatality risk, which is suggested by some preliminary evidence of this association.

More than 4 million deaths from infection are predicted in the uncontrolled scenarios, 
and even in the optimally controlled scenarios more than 1 million deaths are predicted. To 
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provide some context for these results, Fig. 4 shows the imputed time path of the effective 
reproduction number, Re , which is proportional to the contact rate as it changes over the 
course of the outbreak (Aronson et al. 2020), and the physical distancing fraction, xt , From 
March 1 through June 23, 2020 in the United States. The graphs are based on U.S. Centers 
for Disease Control and Prevention (CDC) reports of the cumulative number of infections 
(CDC 2020), assuming that the spread of the virus evolves according to an SIR model sim-
ilar to the one used in our optimal control scenarios (see the "Appendix" for details). The 
imputed effective reproduction numbers, shown in the top panel of the figure, are between 
2 and 7 during the early weeks of March, then trend down to around 1 by the second half 
of April. The implied physical distancing fractions, shown in the bottom panel of the fig-
ure, increase from close to zero at the beginning of the time window to around 0.35 during 
the latter half of the time window. In comparison to the uncontrolled S−I curves shown 
in panel (b) of Fig. 1, the observed time series of cases and the imputed Re values suggest 
that physical distancing measures in the U.S. have been sufficient to dramatically reduce 
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the number of infections and deaths relative to a counter-factual scenario with no physical 
distancing.5

Compared to the number of cases so far reported in the U.S., which provide the basis of 
the graphs shown in Fig. 4, the optimal control paths shown in Figures  1, 2, and 3 allow a 
much larger number of infections to accumulate early in the outbreak before the rapid esca-
lation of physical distancing [consistent with other recent studies, e.g. Alvarez et al. (2020) 
and Kruse and Strack (2020)]. This strategy provides a head start on achieving herd immu-
nity while still preventing the number of people who are infected at any one time to exceed 
the critical threshold of the health care system. If aggressive physical distancing measures 
are implemented before many infections have occurred and are maintained at a sufficiently 
high intensity to keep the number of infections very low over time, then when physical dis-
tancing measures are relaxed a second wave of infections will occur because the number of 
susceptible individuals would still be very high. At least two categories of control options 
not considered here could change the character of this result. Either the widespread use of 
cloth masks (Eikenberry et al. 2020; Howard et al. 2020), or a program of diagnostic test-
ing and self-quarantine (Piguillem and Shi 2020; Taipale et al. 2020; Allen et al. 2020), or 
a combination of these, might allow the relaxation of physical distancing and avoid a sec-
ond wave of infections while awaiting the development of a vaccine or effective treatment. 
If a vaccine or treatment were to become available before the optimal distancing policies 
in Figs. 1, 2, and 3 are concluded, then a higher intensity and shorter duration physical dis-
tancing policy may be optimal. Cloth masks and testing and self-isolation measures might 
also serve as effective substitutes for physical distancing restrictions at all stages of an out-
break, so incorporating these additional control measures into our model would be a useful 
extension in follow-up work.

Several other limitations of our model also should be highlighted. First, we value only 
the reduction in the fatality risks from infection to the exclusion of all other adverse health 
outcomes short of death. In benefit-cost studies of environmental regulations, fatality risk 
reductions typically comprise 90 percent or more of the monetized health benefits (e.g. 
Cropper et al. 2011), but it is not clear whether this will apply to COVID-19 cases. Second, 
the narrow peaks of the infection curves in Figs. 1, 2, and 3 are characteristic of a single 
well mixed population. In reality, the U.S. may be better represented as many connected 
population centers in a spatially explicit model of disease spread, which could produce a 
series of overlapping and interacting infection curves more closely matching the observed 
patterns of cases (Unwin et  al. 2020). We also do not distinguish between individuals 
of different ages or pre-existing health conditions that may make them more vulnerable 
to COVID-19 (Acemoglu et  al. 2020), nor do we distinguish between symptomatic and 
asymptomatic cases (Stock 2020). We also do not model the un-coordinated physical dis-
tancing responses of individuals in an unregulated scenario. Rather, we compare the opti-
mal physical distancing policy to a completely uncontrolled epidemic, in which individu-
als engage in no self-protective behaviors. (As might occur if COVID-19 were widely but 
erroneously viewed as no more dangerous than the seasonal flu.) Standard economic theory 
predicts that if the true risks are known then people would choose to distance themselves 
to a degree that their individual net benefits are maximized (Toxvaerd 2020). With high 
enough infection and fatality risks, we would expect some voluntary physical distancing, 

5 Another factor that we do not examine here but may be important for interpreting the observed number 
of cases over time and for estimating the case fatality ratio is the unknown share of asymptomatic cases of 
infections that remain unrecorded (Stock 2020).
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but generally less than the economically efficient level. Because our net benefit estimates 
presented in Table 2 are calculated with respect to a no-physical distancing counterfactual 
scenario, they provide an upper bound on the net benefits of externally imposed physical 
distancing restrictions. We also ignore a number of other potentially important side-effects 
of physical distancing, which may include increased incidence of domestic abuse as fami-
lies spend more time at home (van Gelder et al. 2020), increased fatality rates from other 
adverse health conditions as people delay treatment to avoid infection in hospitals (Lazzer-
ini et al. 2020), reductions in crime rates (Mohler et al. 2020), adverse mental health effects 
of school closures (Lee 2020), and increased rates of suicide due to social isolation (Gun-
nell et al. 2020). Finally, we focus on economic efficiency and do not address the equity 
implications of the disease risks or the economic effects of physical distancing. Like for 
COVID-19 related deaths, the adverse health effects of air pollution are asymmetrical 
across race and income (e.g. Bowe et al. 2019), and we would expect the economic costs 
of physical distancing also to be borne disproportionately by marginalized groups and low 
income households.

To conclude, we discuss some potential environmental implications of the pandemic 
beyond the links between COVID-19, physical distancing, and air pollution examined in 
our optimal control model. Our aim in this closing section is two-fold: to acknowledge the 
narrow focus of our control model, and to highlight opportunities for further research by 
environmental economists going forward. Our brief discussion here is complementary to 
Helm (2020), IGES (2020), and Barbier (2020), who provide broader discussions of the 
potential long-run environmental impacts from COVID-19. A key question highlighted 
by these articles is whether the necessary fiscal stimulus implemented to accelerate the 
economic recovery will have the effect of re-entrenching the status quo or helping socie-
ties “build back better” by improving economic resilience and environmental quality in 
tandem.

We organize our closing discussion by considering possible long-run changes in how 
people will work, rest, eat, and play after COVID-19. First, among the most important 
components of physical distancing measures widely adopted during the early months of 
the pandemic are work-from-home policies, reduced international and domestic travel for 
in-person meetings, and distance education. To the extent that technical change involves 
learning by doing, this could lower the cost and thereby increase the long-run prevalence 
of remote work and online learning. This could in turn reduce polluting emissions from 
ground and air traffic and make durable a portion of the short-run decline in emissions 
observed in the early days of the pandemic, thereby slowing the rate of climate change and 
reducing the incidence of adverse health effects due to pollution. COVID-19 also could 
accelerate the contraction of globalization, reducing the trade of goods and services and the 
movement of people among nations. This re-animates a large literature on the impacts of 
globalization on the environment (Boyce 2004; Gallagher 2009). Another possibility, likely 
to vary considerably among nations, is that the cost of economic recovery could crowd-out 
existing environmental regulations. If there is a de facto constraint on the overall size and 
scope of government regulations in a country, then an expanded role for government in the 
provision of public health may lead to a diminished role in the provision of environmental 
protection. Closer to home for readers of scholarly journals like this one, we wonder about 
the implications of this episode for the conduct of economic research and science commu-
nication, including the publication and promotion through popular media of rapid results 
prior to formal peer review. We see pros and cons of the current emergency response by 
academics to the pandemic. Rapid dissemination of pre-prints may allow for more timely 
and actionable science to reach the decision-makers who need it, but also might lead to a 
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higher rate of false results (e.g. Freedman 2020; Joseph 2020; Majumder and Mandl 2020). 
Striking the right balance between false positives and false negatives in published results 
during normal times is a complicated (and we think understudied) problem, and it is not 
clear whether and how the balance should change in times of a public health crisis like 
COVID-19.

Second, will COVID-19 have a lasting influence on where people choose to rest—that 
is, where they choose to live? If large cities are engines of economic growth—a conven-
tional but not a consensus view (e.g. Annez and Buckley 2009; Parkinson et  al. 2015; 
Frick and Rodríguez-Pose 2018)—but also come be known as engines of infectious disease 
outbreaks (Stier et al. 2020), what are the implications for the optimal spatial patterns of 
human settlements? Any such influence would have important long-run implications for 
the environment (Newman 2006). For example, if the COVID-19 pandemic helps to slow 
or reverse the trend of migration from rural areas to urban centers in the U.S. (Harris Poll 
2020), this would in turn change the overall amount and the spatial pattern of pollution and 
habitat loss. If compact human settlements are better for biodiversity, then a reversal of the 
trend toward agglomeration in urban centers could have adverse effects on nature and the 
provision of valuable ecosystem services. This would increase the importance of learn-
ing how to design dispersed human settlements that are closely connected to nature with 
minimal environmental impact, rather than reducing impact by concentrating human settle-
ments into smaller areas.

Third, will COVID-19 have long-run implications for food production and consump-
tion? The pandemic could reduce both the demand and the supply of meat products due to 
increased concerns about safety on the part of consumers and increased costs of production 
if stricter safety regulations are imposed on producers. Shifting away from animal to plant 
based proteins has the potential to significantly reduce impacts on the environment, includ-
ing carbon dioxide emissions (Tukker et al. 2011). Preferences for domestically produced 
food also might increase, as the COVID-19 crisis highlights the urgency for securing a 
sufficient domestic food supply as a means of enhancing the resilience of local economies 
in the face of heightened risks of pandemics or other large scale disruptions in the future. 
Whether this will positively or negatively affect land conservation or the climate depends 
on the policy choices made about the changes to food supply.

Finally, will the pandemic have a lasting influence on how people spend their leisure 
time? If people become motivated to shift a portion of their time use to outdoor recreation 
activities—which might pose lower risks of infection than leisure activities indoors or out-
doors in large crowds (Rice et al. 2020; Venter et al. 2020; Samuelsson et al. 2020)—this 
could increase the instrumental value of a clean environment and untrammeled wilderness 
areas. It also could expand the health benefits from exercise outdoors (Lippi et al. 2020; 
Mattioli and Ballerini Puviani 2020; Gössling et al. 2020) and the more general well-being 
benefits from spending time in nature (Bratman et  al. 2019; White et  al. 2019). On the 
other hand, if people withdraw from travel both abroad and at home and spend more time 
indoors watching screens, or if yet another case of a pathogen jumping from an animal 
species to humans (zoonosis) (Andersen et al. 2020; Berry et al. 2018) makes some people 
more fearful of close contact with nature, the health benefits of outdoor recreation might 
contract rather than expand.

The results from our control model presented in this paper suggest that there may be 
important environmental side-effects that could alter the optimal intensity and duration of 
physical distancing policies used to manage the COVID-19 epidemic. Many interventions 
designed to affect consumer behaviors have been shown to work in the short run, but peo-
ple typically revert back to their prior behaviors after the intervention is removed (e.g. Nisa 
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et al. 2019). So the safe bet may be that the salutary environmental side-effects of physi-
cal distancing will dissipate as fast as economic activity resumes after the outbreak. On 
the other hand, some past public health crises have led to lasting and high-impact changes 
in behaviors. These include long distance migrations in the United States during the 19th 
century to escape unhealthy living conditions in eastern cities (Baur 1959; Abrams 2010), 
and improved personal and public hygiene practices that today we take for granted such as 
regular health care visits and hand washing habits (Agüero and Beleche 2017; Foss 2020). 
If COVID-19 leads to behavioral changes as durable as those spurred by past epidemics, 
the environmental implications of the outbreak may extend far beyond the short-term air 
pollution impacts examined here.

Appendix

To produce the graphs in Fig. 4 of the main text, we assumed that the spread of the virus 
evolved according to an SIR model with an effective contact rate that varies over time with 
changes in physical distancing . Referring back to equations (1)–(4), the effective contact 
rate on day t is �t = (1 − xt)

2� , and the number of new infections on day t is �tStIt , where 
� is the contact rate with no physical distancing, and xt is the distancing fraction on day t. 
The U.S. Centers for Disease Control and Prevention (CDC) reports the cumulative num-
ber of infections since January 22, 2020 (CDC 2020). Denoting the cumulative number of 
infections reported prior to day t as Ct , we can write Ct+1 − Ct = �tStIt . Ignoring deaths 
for simplicity, this leads to the following sequential procedure for imputing �t , Re,t , and xt 
based on the reported values for Ct and an assumed value of �:

I1 = C1 , S1 = N − C1
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